NVIDIA Ampere vGPU 配置与测试参考

修订记录

Date	Revision	Editor	Changes
2020/11/12	1.0	Merlin Ma	Initial version.
2020/11/16	1.1	Merrin Ma	Some typo corrections and CI testing.
2021/08/05	2.0	Merlin Ma	For Ampere GPU models (not only A100).
			None-MIG SR-IOV vGPU configuration added. Document
			restructuring. (chapter 4)
2021/08/10	2.1	Merlin Ma	Detailed SR-IOV GPU explanation, rules (chapter 2.4, 2.5).
			More examples.

概述

NVidia A100 GPU 提供了全新的 MIG 多实例 GPU 模式, MIG 功能可以将 GPU 安全地划分 成为最多 7 个独立地 GPU 计算实例,每个计算实例拥有自己所属的计算资源,提供更好 的 QoS 以及故障隔离能力。从 vGPU 11.1 版本开始支持基于 MIG 技术的 vGPU 虚拟机实 例。本文将着重介绍:使用 NVidia A100 GPU 在 MIG 模式下 vGPU 实例的创建和管理,主要 面向 MIG vGPU 的 KVM 虚拟化环境 PoC 测试和部署方法参考。同时,本文也以 A100 GPU 为例,介绍了基于 SR-IOV 的 GPU 的 vGPU 配置方法,也适用于 A10、A40、A16 等 GPU 的 时分 vGPU 方案。

1. 安装需求和准备工作

- 1. 主机配置: NVidia Ampere GPU 的 X86_64 服务器。
- 2. KVM HOST: 安装 Redhat RHEL 8.2 及其以上版本。
- 3. GRID 11.1 或者以上版本试用软件及许可证,请先确认 vGPU 软件与物理 GPU 的兼容性。

2. KVM Host 软硬件基础配置概要

2.1. 修改 Linux kernel 启动参数

在 KVM 平台的 Linux kernel 启动项中添加 intel_iommu=on iommu=pt 通常此配置文件在: /boot/efi/EFI/redhat/grubenv 或 /boot/grub2/grubenv

这是修改后的 RHEL8.2 kenel 参数: (添加蓝色部分):

[root@kvm ~]# cat /boot/grub2/grubenv
GRUB Environment Block
saved entry=11f957e144e643c68255fd47642d77b3-4.18.0-193.el8.x86 64
kernelopts=root=/dev/mapper/rhel-root ro crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root rd.lv
m.lv=rhel/swap rhgb intel_iommu=on iommu=pt quiet
boot_success=0
boot_indeterminate=0
[root@kvm ~]# cat /proc/cmdline
BOOT_IMAGE=(hd2,gpt2)/vmlinuz-4.18.0-193.el8.x86_64 root=/dev/mapper/rhel-root ro crashkernel=auto resume=/dev/m
apper/rhel-swap rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb intel_iommu=on iommu=pt quiet
[root@kvm ~]#

2.2. 安装 vGPU 的 KVM Host 驱动

rpm -ivh NVIDIA-vGPU-rhel-8.2-450.89.x86_64.rpm。

[noot@kym lloct]#]c] NV/TDTA vCDU pho	2 2 4 50 90 90 90 50 51 000	
[POOL@KVM HOSC]# IS -I NVIDIA-VGPO-PME	er-8.2-450.89.886_64.1.hill	
-rw-rw-r 1 root root 18239080 Nov 5	5 01:13 NVIDIA-vGPU-rhel-8.2-450.89	.x86_64.rpm
[root@kvm Host]# rpm -ivh NVIDIA-vGPU-	rhel-8.2-450.89.x86_64.rpm	
Verifying	****	[100%]
Preparing	****	[100%]
Updating / installing		
1:NVIDIA-vGPU-rhel-1:8.2-450.89	****	[100%]
[root@kvm Host]# <mark> </mark>		

2.3. Reboot 并确认 GPU 状态

修改 kernel 参数和安装 vGPU Host 驱动以后,一定要 reboot 使其生效。

检查 nvidia-smi 输出: 应该看到 A100 GPU, 默认状态 MIG 是被禁用状态的。 记录下 A100 GPU 的 PCI BUS ID, 本例中为: 0000:81:00.0

[root@ Thu No	kvm ~]# v 12 23:	nvid 17:1	ia-smi 9 2020						
+ NVID	IA-SMI 4	450.8	9	Driver	Version:	450.8	89 (CUDA Versio	on: N/A
GPU Fan 	Name Temp F	Perf	Persist Pwr:Usa	ence-M ge/Cap	Bus-Id	Memor	Disp.A ry-Usage	Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
0 N/A 	A100-P0 29C	CIE-4 P0	0GB 35W /	On 250W	0000000 0M:	9:81:0 iB / 4	00.0 Off 40537MiB	 0%	0 Default Disabled
1 N/A 	Tesla 1 35C	Γ4 P8	16W /	On 70W	0000000 83M:	0:84:0 iB / 1	00.0 Off 15359MiB	 0%	0 Default N/A

2.4. 启用 SRIOV

注意:在执行此步骤之前,请确保物理 GPU 未被任何其他进程使用,例如: CUDA 程序、 监控程序或 nvidia-smi 命令。仅使用随 NVIDIA vGPU 软件提供的自定义脚本 sriov-manage。 不要尝试通过其他方式使能 SR-IOV。

运行/usr/lib/nvidia/sriov-manage -e 加上前面记下的 Bus-ID, 例如:

/usr/lib/nvidia/sriov-manage -e 0:81:0.0 [root@kvm ~]# /usr/lib/nvidia/sriov-manage -e 0:81:0.0 Enabling VFs on 0000:81:00.0 [root@kvm ~]# Kernel log 可以看到:

		.00.0 has soleware scheduler ENABLED with policy volo_heleAlive.
nvidia	0000:81:00.4:	enabling device (0000 -> 0002)
nvidia	0000:81:00.4:	MDEV: Registered
nvidia	0000:81:00.5:	enabling device (0000 -> 0002)
nvidia	0000:81:00.5:	MDEV: Registered
nvidia	0000:81:00.6:	enabling device (0000 -> 0002)
nvidia	0000:81:00.6:	MDEV: Registered
nvidia	0000:81:00.7:	enabling device (0000 -> 0002)
nvidia	0000:81:00.7:	MDEV: Registered
nvidia	0000:81:01.0:	enabling device (0000 -> 0002)
nvidia	0000:81:01.0:	MDEV: Registered
nvidia	0000:81:01.1:	enabling device (0000 -> 0002)
nvidia	0000:81:01.1:	MDEV: Registered
nvidia	0000:81:01.2:	enabling device (0000 -> 0002)
nvidia	0000.81.01 2.	MDEV. Registered

如果执行 SRIOV 使能时发生如下错误,需要检查 kernel 参数中的 iommu 选项是否生效。 或服务器 BIOS 中的相关选项。

```
[root@kvm nvidia]# cd /usr/lib/nvidia/
[root@kvm nvidia]# ls
common.sh post-install pre-uninstall sriov-manage systemd sysv upstart
[root@kvm nvidia]# lspci |grep -i NV
81:00.0 3D controller: NVIDIA Corporation Device 20f1 (rev a1)
84:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
[root@kvm nvidia]# ./sriov-manage -e 0:81:0.0
Enabling VFs on 0000:81:00.0
./sriov-manage: line 97: /sys/bus/pci/drivers/nvidia/bind: No such file or directory
./sriov-manage: line 142: echo: write error: No such device
./sriov-manage: line 142: echo: write error: No such device
./sriov-manage: line 142: echo: write error: No such device
./sriov-manage: line 142: echo: write error: No such device
./sriov-manage: line 142: echo: write error: No such device
./sriov-manage: line 142: echo: write error: No such device
./sriov-manage: line 142: echo: write error: No such device
```

看到 dmesg kenrel log 有报错:

220 CZOE071 M	VDM. Aborting probe for VE 0000.01.00 A since TOMMU is not present on the sustan
328.670507 N	VRM: Aborting probe for VF 0000:81:00.4 since lommo is not present on the system.
328.670514] n	vidia: probe of 0000:81:00.4 failed with error -1
328.670668] N	VRM: Aborting probe for VF 0000:81:00.5 since IOMMU is not present on the system.
328.670673] n	vidia: probe of 0000:81:00.5 failed with error -1
328.670807] N	VRM: Aborting probe for VF 0000:81:00.6 since IOMMU is not present on the system.
328.670811] n	vidia: probe of 0000:81:00.6 failed with error -1
328.670941] N	VRM: Aborting probe for VF 0000:81:00.7 since IOMMU is not present on the system.
328.670945] n	vidia: probe of 0000:81:00.7 failed with error -1
328.671094] N	VRM: Aborting probe for VF 0000:81:01.0 since IOMMU is not present on the system.
328.671129] n	vidia: probe of 0000:81:01.0 failed with error -1
328.671306] N	VRM: Aborting probe for VF 0000:81:01.1 since IOMMU is not present on the system.
328.671323] n	vidia: probe of 0000:81:01.1 failed with error -1

确认启用了 SR-IOV 之后,对于 A100 和 A30 等支持 MIG 特性的物理 GPU,既可以使用常规 Time Sliced 类型的 vGPU,也可以使用 MIG 后端类型 vGPU。而 A10, A40 等不支持 MIG 特性的 GPU 则只支持 Time Sliced 方式的 vGPU.

通过 lspci 命令可查看 GPU 支持的 SR-IOV 属性,例如查看本案中 81:00.0 的 A100 GPU:

lspci -s 00:81:00.0 -vv

看到 A100 最大分配 VF 数量为 16 个。

所以, 使能 SRIOV 后, 在 /sys/class/mdev_bus/ 目录中可以列出所有可用于创建 vGPU 的 VF 设备的 BDF, A100 的 00:81:* 的 VF 目录一共是 **16** 个。

[root@kvm mdev_bus	s]# pwd				
/sys/class/mdev_bu	IS				
[root@kvm mdev_bus	s]# ls				
0000:81:00.4 0000	8:81:00.7	0000:81:01.2	0000:81:01.5	0000:81:02.0	0000:81:02.3
0000:81:00.5 0000	0:81:01.0	0000:81:01.3	0000:81:01.6	0000:81:02.1	0000:84:00.0
0000:81:00.6 0000	9:81:01.1	0000:81:01.4	0000:81:01.7	0000:81:02.2	
[root@kvm mdev_bus	;]#				

2.5. 基于 SRIOV 的 vGPU 特性

创建 SR-IOV 类型的 vGPU, 遵循以下方法:

- 1. 每个 vGPU 实例占用一个 VF 设备,一旦 VF 已经被分配,该 VF 上不可再创建 vGPU。
- 每物理 GPU 的 VF 总数 >= 该 GPU 上可创建的 vGPU 最大实例数,例如 A100 单卡的 Total VF 数量为 16,而最大 A100 单卡的 vGPU 实例数为 40GB(FB 总量)/4GB(4C 类型 vGPU Size) = 10。因此,VF 总数并不是该 GPU 的可创建最大 vGPU 数量。
- 3. 最大可创建的 vGPU 实例数可以查询该 vGPU 类型目录中的 description 文件中描述的 max_instances 的值。例如:

```
[root@kvm 0000:81:00.4]# cd mdev_supported_types/
[root@kvm mdev_supported_types]# ls
nvidta-468 nvidia-470 nvidia-472 nvidia-474 nvidia-476 nvidia-478
nvidia-469 nvidia-471 nvidia-473 nvidia-475 nvidia-477
[root@kvm mdev_supported_types]# pwd
/sys/class/mdev_bus/0000:81:00.4/mdev_supported_types
[root@kvm mdev_supported_types]# cd nvidia-468/
[root@kvm nvidia-468]# cat name
GRID_A100-4C
[root@kvm nvidia-468]# cat description
num_heads=1, frl_config=60, framebuffer=4096M, max_resolution=4096x2160, max_instance=10
[root@kvm nvidia-468]#
```

4. 每一个 VF 设备的当前实时可创建 vGPU 数量应查询该 VF 目录下,指定类型目录中 available_instances 文件中的值: 1 表示可以在此 VF 设备创建指定的 vGPU 类型实 例。0 则表示不可创建此类型 vGPU,可能是由于当前 VF 已经被占用,或当前 vGPU 类型不被支持。

下面将分开介绍创建 MIG 和 Non-MIG 模式的 vGPU 实例

如果您使用的是 A10、A40、A16 等非 MIG GPU, 请直接跳至本文第 4 章。

3. MIG 类型的 vGPU 配置概要

如果您的物理 GPU 支持 MIG 特性,例如 A100,A30。则既可以使用 MIG 模式的 vGPU 以实现物理 分区的实例隔离性,也可以使用 Time Sliced(时间片方式切分共享)模式,本章节介绍 MIG 模式的 vGPU 的配置。如果您使用时间片切分的 vGPU 请参考下一个章节。

3.1. 启用 MIG 模式

创建基于 MIG 的 vGPU 实例需要将 GPU 切换到 MIG 模式, 此配置为持久配置, 只需执行一次, 重启服务器后仍然有效:

nvidia-smi -mig 1

[root@kvm ~]# nvidia-smi -i @ Enabled MIG Mode for GPU 000@ All done. [root@kvm ~]# nvidia-smi Thu Nov 12 23:39:59 2020	0 -mig 1 00000:81:00.0			
NVIDIA-SMI 450.89 Dri	iver Version: 4	50.89	CUDA Version	: N/A
GPU Name Persistend Fan Temp Perf Pwr:Usage/ 	ce-M Bus-Id /Cap M 	Disp.A emory-Usage	Volatile U GPU-Util +===================================	Incorr. ECC Compute M. MIG M.
0 A100-PCIE-40GB Or N/A 40C P0 87W / 25	n 00000000: 50W 0MiB	81:00.0 Off / 40537MiB	 N/A	On Default Enabled
1 Tesla T4 Or N/A 38C P8 16W / 7 	n 000000000 70W 83MiB 	84:00.0 Off / 15359MiB	 0% 	0 Default N/A
+				+
MIG devices:	+	+		 +
GPU GI CI MIG ID ID Dev 	Memory-Usage BAR1-Usage	Vol SM Unc ECC	Sha CE ENC DE	ired C OFA JPG
No MIG devices found	+	=======+		
•				
Processes: GPU GI CI PID ID ID	Type Proces	s name		GPU Memory Usage
No running processes found	d			

3.2. MIG 设备初始化

SR-IOV GPU 的每一个 VF 设备目录下只能创建一个 vGPU 实例。这个在 A100 时分模式的 SRIOV based vGPU 同样适用。

这里我们可以检索每一个 VF 目录所能创建的 vGPU 类型和数量:

[roc	ot@kvm mdev_bus]	# ls							
0000	:81:00.4 0000:	81:00.7	0000:81:	01.2	0000:81:01.5	0000:81:02.0	0000:81:02.3		
0000	:81:00.5 0000:	81:01.0	0000:81:	01.3	0000:81:01.6	0000:81:02.1	0000:84:00.0		
0000	:81:00.6 0000:	81:01.1	0000:81:	01.4	0000:81:01.7	0000:81:02.2			
[roc	t@kvm mdev_bus]	# cd 000	0\:81\:00	.4/mde	v_supported_t	ypes/			
[roc	t@kvm mdev_supp	orted_ty	pes]# ls						
nvid	lia-468 nvidia-	470 nvi	dia-472	nvidia	-474 nvidia-	476 nvidia-47			
nvid	lia-469 nvidia-	471 nvi	dia-473	nvidia	-475 nvidia-	477			
[roc	ot@kvm mdev supp	orted ty	pes]#_for	i in	* ; do echo "	" \$(cat \$i/n	ame) available:	<pre>\$(cat \$i/ava</pre>	ai*); done
G	GRID A100-4C ava	ilable: 0	9						
G	GRID A100-5C ava	ilable: 0	9						
G	GRID A100-8C ava	ilable: 0	9						
G	GRID A100-10C av	ailable:	0						
G	GRID A100-20C av	ailable:	0						
G	GRID A100-40C av	ailable:	0						
G	GRID A100-1-5C a	vailable	: 0						
G	GRID A100-2-10C	availabl	e: 0						
G	GRID A100-3-20C	availabl	e: 0						
G	GRID A100-4-20C	availabl	e: 0						
G	GRID A100-7-40C	availabl	e: 0						
[roc	ot@kvm mdev_supp	orted_ty	pes]#						

可以看到如果不创建 MIG GI,则所以的 MIG 类型的 vGPU 可创建数量均为 0,因此我们需要先为 vGPU 创建相应的 MIG GPU Instance.

有关 MIG 的管理, 请参见:

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

3.3. 创建用于 vGPU 的 MIG GPU Instance (GI)

这里我们创建 2 个测试 GI, 分别为 MIG 4g.20gb 和 MIG 2g.10gb

列出 MIG GI Profile:

[r	root@	kvm ~]# nvi	dia-smi	mig -lgip						
	GPU GPU	instance pr Name	ofiles: ID	Instances Free/Total	Memory GiB	P2P	SM CE	DEC JPEG	ENC OFA	-+
	0	MIG 1g.5gb	19	7/7	4.75	No	14 1	0 0	0 0	-
	0	MIG 2g.10g	jb 14	3/3	9.75	No	28 2	1 0	0 0	
	0	MIG 3g.20g	;b 9	2/2	19.62	No	42 3	2 0	0 0	
İ	0	MIG 4g.20g	;b 5	1/1	19.62	No	56 4	2 Ø	0 0	
	0	MIG 7g.40g	;b 0	1/1	39.50	No	98 7	5 1	0 1	

成功创建 GI:

[r Su Su [r	oot@ cces cces oot@	kvm ~]# sfully c sfully c kvm ~]#	nvidia- created created nvidia-	Smi GPU GPU Smi	mig insta insta mig	-cgi ance ance -lgi	5,1 ID ID	4 1 5	on on	GPU GPU	0 0	using using	g profile g profile	MIG MIG	4g.20gb 2g.10gb	(ID (ID	5) 14)
	GPU GPU	instance Name	es:	Pro I	ofile D	Ins [stan [D	ce	F	Place Start	mer :Si	nt ize					
	0	MIG 2g	.10gb	1	4		5			4:	2						
	0	MIG 4g	.20gb		5		1			0:	4						

3.4. 创建 vGPU 设备

此时杳看 vGPU profile 各类型中可创建的数量:

[root@kvm mdev_supported_types]# pwd
/sys/class/mdev_bus/0000:81:00.4/mdev_supported_types
[root@kvm mdev_supported_types]# for i in * ; do echo \$i: \$(cat \$i/name) available: \$(cat \$i/avai*); done
nvidia-468: GRID A100-4C available: 0
nvidia-469: GRID A100-5C available: 0
nvidia-470: GRID A100-8C available: 0
nvidia-4/1: GRID A100-10C available: 0
NVIGIA-4/2: GRID A100-20C AVAILADIE: 0
nvidia-473, GRID A100-40C available, o
$r_1 r_1 r_2 r_4 r_5$ (RID A100-2-10C available) 1
vidia 476: GRID A100-3-20C available: 0
vidia-477: GRID A100-4-20C available: 1
nvidia-478: GRID A100-7-40C available: 0
[root@kvm mdev_supported_types]# ls
nvidia-468 nvidia-470 nvidia-472 <u>nvidia-474</u> nvidia-476 nvidia-478
nvidia-469 nvidia-471 nvidia-473 nvidia-475 nvidia-477
即可对于 A100-2-10C,或者 A100-4-20C 创建 MIG vGPU 实例。
这里选择第一个 VF 目录 /sys/class/mdev_bus/0000:81:00. <mark>4</mark> /mdev_supported_types
分别对应目录 nvidia-475, nvidia-477。
[root@kvm mdev supported types]# cd nvidia-475/
[root@kvm nvidia-475]# ls
available_instances create description device_api devices name
[root@kvm nvidia-475]# uuidgen > create
[root@kvm nvidia-475]# ls
available_instances create description device_api devices name
[root@kvm n∀idia-475]# ls devices
c9035e18-77ac-4b54-9df0-284ff30feece
[root@kvm nvidia-475]# _

上面创建了一个 2-10C vGPU 设备,如果创建第二个,则需要到另一个 VF 目录,这里转到 /sys/class/mdev_bus/0000:81:00.5/mdev_supported_types。可以看到仅有 1 个 4-20C 的 vGPU 类型可以创建。

3.5. 创建 VM, 向 VM 添加 MIG vGPU 设备

- 1. 创建 VM,并添加 vGPU mdev 设备
- 2. 此步与 Non-MIG 模式 vGPU 的配置相同, 这里请参见标准添加步骤。 以下是 KVM 虚拟机中添加的 mdev 设备的片段。

3.6. VM 内安装 vGPU 客户机驱动程序和 CUDA

VM 启动后,需要在虚拟机内安装 vGPU Guest 驱动程序和 CUDA 框架。

Installing vGPU gues	st driver, ple	ease wait.	•••			
Uncompressing NVIDI	A Accelerated	Graphics [Driver for Li	nux-x86_64	450.89	
Fri Nov 13 00:45:18	2020					
NVIDIA-SMI 450.89	Driver	Version: 4	450.89	CUDA Versi	lon: 11.0	+
GPU Name Fan Temp Perf 	Persistence-M Pwr:Usage/Cap	Bus-Id I	Disp.A Memory-Usage	Volatile GPU-Util 	e Uncorr. ECC Compute M. MIG M.	
0 GRID A100-4-: N/A N/A P0 	20C On N/A / N/A	00000000 1844Mil	:00:0A.0 Off B / 20475MiB	+ N/A 	On Default Enabled	
+				+		+
MIG devices:	·		L			
GPU GI CI MIG ID ID Dev	Memc BA	ory-Usage AR1-Usage	Vol SM Unc ECC	S CE ENC	Shared DEC OFA JPG	
No MIG devices for	+=====================================		+======+			
+						+
Processes: GPU GI CI ID ID	PID Typ	e Proces	ss name		GPU Memory Usage	
No running proces	sses found					
Installing CUDA, plo Done. Building gpu_burn [root@test000081005	ease wait 4-20C 1 ~]#					Ŧ

A100 MIG 模式的 vGPU 需要 vCS license 授权

3.7. VM 内创建 MIG Compute Instance

MIG vGPU 需要创建计算实例才能运行 CUDA 计算: 也可以根据需要创建不同规格的 CI 实例,默认会创建最大 profile 的 MIG 计算实例。 nvidia-smi mig -cci root@test000081005_4-20C_1 ~]# nvidia-smi mig -cci successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using profile MIG 4g.20gb (ID 3) root@test000081005_4-20C_1 ~]# nvidia-smi ri Nov 13 00:55:50 2020 NVIDIA-SMI 450.89 Driver Version: 450.89 CUDA Version: 11.0 GPU Name Persistence-M| Bus-Id Disp.A Volatile Uncorr. ECC Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M. Fan MIG M. _____ GRID A100-4-20C 00000000:00:0A.0 Off On 0 N/A N/A PØ 1844MiB / 20475MiB N/A Default Enabled MIG devices: GPU GI CI MIG ID ID Dev Memory-Usage Vol Shared BAR1-Usage CE ENC DEC OFA JPG 1844MiB / 20475MiB | 0MiB / 4096MiB | 56 Processes: PID Type Process name GPU Memory Usage No running processes found

3. CUDA 计算测试

[root@test000081005_4-20C_1 ~]# nvidia-smi -L GPU 0: GRID A100-4-20C (UUID: GPU-98420d02-2505-11eb-8d63-b7a74215b053) MIG 4g.20gb Device 0: (UUID: MIG-GPU-98420d02-2505-11eb-8d63-b7a74215b053/0/0) root@test000081005_4-20C_1 ~]# ls in nvdrv-install.sh NVIDIA_CUDA-11.0_Samples NVIDIA-Linux-x86_64-450.89-grid.run update_xpciid.sh [root@test000081005_4-20C_1 ~]# cd bin/ root@test000081005_4-20C_1 bin]# ls compare.ptx gpu_burn root@test000081005_4-20C_1 bin]# ./gpu_burn 20 GPU 0: GRID A100-4-20C (UUID: GPU-98420d02-2505-11eb-8d63-b7a74215b053) MIG 4g.20gb Device 0: (UUID: MIG-GPU-98420d02-2505-11eb-8d63-b7a74215b053/0/0) Initialized device 0 with 20475 MB of memory (18183 MB available, using 16364 MB of it), using FLOATS 15.0% proc'd: 1020 (5605 Gflop/s) errors: 0 temps: --Summary at: Fri Nov 13 00:59:20 CST 2020 35.0% proc'd: 3060 (8761 Gflop/s) errors: 0 temps: --Summary at: Fri Nov 13 00:59:24 CST 2020 50.0% proc'd: 4080 (8761 Gflop/s) errors: 0 temps: --Fri Nov 13 00:59:27 CST 2020 Summary at: 65.0% proc'd: 6120 (8761 Gflop/s) errors: 0 temps: --Fri Nov 13 00:59:30 CST 2020 Summary at: proc'd: 8160 (8761 Gflop/s) errors: 0 temps: --85.0% Summary at: Fri Nov 13 00:59:34 CST 2020 100.0% proc'd: 9180 (8761 Gflop/s) errors: 0 temps: --Summary at: Fri Nov 13 00:59:37 CST 2020

看到运行 CUDA 计算正常。

3.8. 修改 MIG Compute Instance 并为不同的应用指定不同的 CI

• 列出当前分配的 CI:

nvidia-smi -lci

[root@	test00008:	1005_4-20C_1 ~]# n\	/idia-smi mig	g -lci	
Comp	ute insta	nces:	Profilo	Instance	Placement
	Instance	e	ID	ID	Start:Size
 =====	1D ======				======
0	0	MIG 4g.20gb	3	0	0:4

• 删除不需要的 CI:

nvidia-smi -dci -ci <CI_ID>

[root@test000081005_4-20C_1 ~]# nvidia-smi mig -dci -ci 0 Successfully destroyed compute instance ID 0 from GPU 0 GPU instance ID 0

• 列出支持的 CI 类型

nvidia-smi -lcip

[root@t +	est0000810	05_4-20C_1 ~]# nvi	dia-smi mi	g -lcip				
Compu GPU 	te instanc GPU Instance ID	e profiles: Name	Profile ID	Instances Free/Total	Exclusive SM	DEC CE	Shared ENC JPEG	OFA
====== 0 	0	MIG 1c.4g.20gb	0	4/4	14	2 4	0 0	 Ø
+ 0 	0	MIG 2c.4g.20gb	1	2/2	28	2 4	0 0	0
0	0	MIG 4g.20gb	3*	1/1	56	2 4	0 0	0

• 可以一次创建多个新的 CI

nvidia-smi -cci <id1,id2,id3...>

下面分别创建 2 个 1c 和一个 2c 实例, Profile ID 分别为 0, 和 1。

[root@test000	081005_4	-20C_1 ~	~]# nvidia	a-smi	i m	nig	-cci	1,	,0,0									
Successfully	created	compute	instance	ID	0	on	GPU	0	GPU	instance	ID	0	using	profile	MIG	2c.4g.20gb	(ID	1)
Successfully	created	compute	instance	ID	1	on	GPU	0	GPU	instance	ID	0	using	profile	MIG	1c.4g.20gb	(ID	0)
Successfully	created	compute	instance	ID	2	on	GPU	0	GPU	instance	ID	0	using	profile	MIG	1c.4g.20gb	(ID	0)
root@test000	081005_4	-20C_1 ~	~]#															

• 设定 CUDA_VISIBLE_DEVICES 环境变量,运行 CUDA 程序。

通过上面测试,可以观察到 MIG 模式下的 vGPU VM 内通过 CI 划分,在应用间可以分配不同的资源,提供良好的 QoS 和灵活性。

4. Time Sliced 类型的 vGPU 配置概要

对于 Non-MIG 的 Ampere 架构 GPU, vGPU 仍然使用 Time Sliced(时分共享)模式。新架构启用 了 SR-IOV, vGPU 的管理还是在 vfio-mdev 的基础之上的。SR-IOV 的 vGPU 设备分配和之前非 SR-IOV 的 mdev 设备创建和管理会有所不同。本章节将讲解基于 SR-IOV 的 vGPU (例如 A10, A40, A16)时分切分方式的配置方法。

4.1. 创建 vGPU 设备

这里我们仍然以 A100 GPU 为例,在启用 SR-IOV 之后,可以在 /sys/class/mdev_bus 目录中 看到所有的 VF 设备目录,如下图。

<pre>[root@kvm mdev_bus]# cd /s</pre>	sys/class/mdev_bu	us/			
[root@kvm mdev_bus]# ls					
0000:81:00.4 0000:81:00.3	7 0000:81:01.2	0000:81:01.5	0000:81:02.0 0000	:81:02.3	
0000:81:00.5 0000:81:01.0	0000:81:01.3	0000:81:01.6	0000:81:02.1 0000	:84:00.0	
0000:81:00.6 0000:81:01.3	1 0000:81:01.4	0000:81:01.7	0000:81:02.2		
[root@kvm mdev_bus]# ls 00	300\:81\:00.4				
ari_enabled	d3cold_allowed	iommu	<pre>mdev_supported_</pre>	types resource	subsystem
broken_parity_status	device	iommu_group	modalias	resource0	subsystem_device
class	dma_mask_bits	irq	msi_bus	resource1	subsystem_vendor
config	driver	local_cpulist	numa_node	resource1_wc	uevent
consistent_dma_mask_bits	driver_override	local_cpus	physfn	resource3	vendor
current_link_speed	enable	<pre>max_link_spee</pre>	d power	resource3_wc	
current_link_width	firmware_node	max_link_widt	h reset	revision	
[root@kvm mdev_bus]# _					
[root@kvm mdev_bus]#					

注意:这里基于 SR-IOV 的 vGPU,每一个 VF 设备只对应一个 vGPU 实例。这是非 SRIOV 的 GPU 的主要区别。每个 VF 设备目录,例如上图中 0:81:00.4 VF 中只能创建一个 mdev 设备。同时 Time sliced 模式的 vGPU,仍然要遵循同物理设备的 vGPU 类型唯一的原则。 创建 vGPU 设备仍然是通过每个 VF 目录 /mdev_supported_types/*/create 来创建。 这里我们创建第一个 A100-4C 类型的 vGPU 实例:

1. 选择未使用的 VF 设备目录

选择第一个设备目录: 0000:81:00.4

进入目录可以看到如下图的目录结构:

[root@kvm mdev_bus]#					
[root@kvm mdev_bus]# cd 0	000\:81\:00.4				
[root@kvm 0000:81:00.4]#	ls				
ari_enabled	d3cold_allowed	iommu	<pre>mdev_supported_types</pre>	resource	subsystem
broken_parity_status	device	iommu_group	modalias	resource0	subsystem_device
class	dma_mask_bits	irq	msi_bus	resource1	subsystem_vendor
config	driver	local_cpulist	numa_node	resource1_wc	uevent
consistent_dma_mask_bits	driver_override	local_cpus	physfn	resource3	vendor
current_link_speed	enable	<pre>max_link_speed</pre>	power	resource3_wc	
current_link_width	firmware_node	max_link_width	reset	revision	
[root@kvm 0000:81:00.4]#	cd mdev_supported	_types/			
[root@kvm mdev_supported_	types]# ls				
nvidia-468 nvidia-470 n	vidia-472 nvidia	-474 nvidia-476	nvidia-478		
nvidia-469 nvidia-471 n	vidia-47 <u>3</u> nvidia	-475 nvidia-477			
[root@kvm mdev_supported_	types]#				

2. 找出 4C 类型对应的目录

下面脚本可以列出所有支持的 mdev 设备名称和 vGPU 设备可用数量

cd mdev_supported_types for i in *; do echo \$i, `cat \$i/name` `cat \$i/ava*`; done [root@kvm mdev_supported_types]# [root@kvm mdev_supported_types]# for i in *; do echo \$i, `cat \$i/name` `cat \$i/ava*`; done nvidia-468, GRID A100-4C 1 nvidia-469, GRID A100-5C 1 nvidia-470, GRID A100-8C 1 nvidia-471, GRID A100-10C 1 nvidia-472, GRID A100-20C 1 nvidia-473, GRID A100-1-5C 0 nvidia-475, GRID A100-1-5C 0 nvidia-475, GRID A100-2-10C 0 nvidia-476, GRID A100-2-0C 0 nvidia-477, GRID A100-2-0C 0 nvidia-478, GRID A100-7-40C 0 [root@kvm mdev_supported_types]#

这里可用看到, A100-4C 类型的目录名为 nvidia-468, 且可用实例数量为 1

所以可以在此 VF 上创建 1 个 4C 类型的 vGPU 实例, 目录使用 nvidia-468

3. 使用 uuid 创建 vGPU 设备

uuidgen > nvidia-468/create

[root@kvm mdev_supported_types]# cd nvidia-468/ [root@kvm nvidia-468]# ls available_instances create description device_api devices name [root@kvm nvidia-468]# uuidgen > create [root@kvm nvidia-468]# ls devices 59b486f4-4205-438f-a24e-2ac2b5384a75

上图可以看到创建成功

[root@kvm mdev_supported_types]# pwd
/sys/class/mdev_bus/0000:81:00.4/mdev_supported_types
[root@kvm mdev_supported_types]#
[root@kvm mdev_supported_types]# for i in * ; do echo \$i, `cat \$i/name` `cat \$i/ava*` ; done
nvidia-468, GRID A100-4C 0
nvidia-469, GRID A100-5C 0
nvidia-470, GRID A100-8C 0
nvidia-471, GRID A100-10C 0
nvidia-472, GRID A100-20C 0
nvidia-473, GRID A100-40C 0
nvidia-474, GRID A100-1-5C 0
nvidia-475, GRID A100-2-10C 0
nvidia-476, GRID A100-3-20C 0
nvidia-477, GRID A100-4-20C 0
nvidia-478, GRID A100-7-40C 0

上图显示已分配 vGPU 的 VF 0:81:00.4 可用的剩余 vGPU 实例数, 全部为 0。意味着当 前 VF 已经不能再创建新的 vGPU 设备。新的 vGPU 只能创建在不同的 VF 上。 因此需要切换到另一个 VF 目录,例如: 0000:81:00.5 检查可用 vGPU 实例状态:

[root@kvm 0000:81:00.5]# pwd	
/sys/class/mdev_bus/0000:81:00.5	
[root@kvm 0000:81:00.5]# cd mdev_supported_types/	
[root@kvm mdev_supported_types]# for iin * ; do echo \$i, `cat \$i/name` `cat \$i/ava*` ; done	
nvidia-468, GRID A100-4C 1	
nvidia-469, GRID A100-5C 0	
nvidia-470, GRID A100-8C 0	
nvidia-471, GRID A100-10C 0	
nvidia-472, GRID A100-20C 0	
nvidia-473, GRID A100-40C 0	
nvidia-474, GRID A100-1-5C 0	
nvidia-475, GRID A100-2-10C 0	
NVIdia-4/6, GRID A100-3-200 0	
NVIDIA-4//, GRID A100-4-200 0	
可以看到全闲的 VF 工面仍然可以创建工作相同类型的 VGPO 关例。直到所有 VF 的可	
用 vGPU instance 全部为 0。	
凸此, 下图在 VF 0.61.00.5 工成功创建] 另二十 VGPO 设备。 以此关准。	
[<u>r</u> oot@kvm mdev supported types]# pwd	
/svs/class/mdev bus/0000.81.00.5/mdev supported types	
[root@kvm_mdev_supported_types]# Is	
nvidia-468 nvidia-470 nvidia-472 nvidia-474 nvidia-476 nvidi	a-478
nvidia 460 nvidia 471 nvidia 472 nvidia 475 nvidia 477	
[root@kvm mdev_supported_types]# pwd	
/sys/class/mdev bus/0000:81:00.5/mdev supported types	
[root@kym mdey supported types]# uuidgen > nyidia-468/create]	
[noot@kym mdoy supported_types]#]s nyidia_468/dovices/	

43805aeb-9d0a-4c11-bf66-83173eacb660 [root@kvm mdev_supported_types]#

4.2. 添加 vGPU MDEV 设备到 VM

后续步骤和标准的非 SR-IOV 的操作相同。

如下图,将之前生成 vGPU 的 uuid 写入虚拟机的 libvirt xml 文件。

```
[root@kvm mig-4-20c]# ls /sys/bus/mdev/devices/ -1
total 0
lrwxrwxrwx 1 root root 0 Jul 13 20:08 30af52db-81c2-487c-adfe-fb5ced0cf806 -> ../../..
0:03.0/0000:82:00.0/0000:83:08.0/0000:84:00.0/30af52db-81c2-487c-adfe-fb5ced0cf806
lrwxrwxrwx 1 root root 0 Aug 5 14:18 43805aeb-9d0a-4c11-bf66-83173eacb660
lrwxrwxrwx 1 root root 0 Aug 5 13:48 59b486f4-4205-438f-a24e-2ac2b5384a75 -> ../../..
0:02.0/0000:81:00.4/59b486f4-4205-438f-a24e-2ac2b5384a75
lrwxrwxrwx 1 root root 0 Jul 13 20:17 f88e4d52-87f7-4d71-86cf-8dd108617db3 -> ../../..
0:03.0/0000:82:00.0/0000:83:08.0/0000:84:00.0/f88e4d52-87f7-4d71-86cf-8dd108617db3
```


之后启动 VM:

```
a100_000081005_4-20C_1 : ca989eb3-56e3-43f4-8e30-f64b0e93fc74
Net:
192.168.122.191/24 | VNET3 | 52:54:00:E2:36:01
Disk:
Type Device Target Source
file disk vda /var/lib/libvirt/images/a100_linked_1-ca989eb3-56e3-43f4-8e30-f64b0e93fc74.qcow2
```

4.3. 安装 vGPU Guest Driver

[root@a100_00081005_4-20C_1 ~]# ls
bin nv-docker-install.sh NVIDIA_CUDA-11.0_Samples NVIDIA-Linux-x86_64-460.73.01-grid.run perl5
[root@a100_000081005_4-20C_1 ~]# ./NVIDIA-Linux-x86_64-460.73.01-grid.run
Verifying archive integrity OK
Uncompressing NVIDIA Accelerated Graphics Driver for Linux-x86_64 460.73.01
[root@a100_00081005_4-20C_1_~]#

安装完成

root@a100_000081005_4-20C_1 ~]# nvidia-smi nu Aug 5 02:32:03 2021
NVIDIA-SMI 460.73.01 Driver Version: 460.73.01 CUDA Version: 11.2
GPU Name Persistence-M Bus-Id Disp.A Volatile Uncorr. ECC Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M. Image: Compute M. Image Image MIG M.
0 GRID A100-4C On 00000000:00:0A.0 Off 0 0 N/A N/A P0 N/A / N/A 407MiB / 4091MiB 0% Default Disabled
Processes:
GPU GI CI PID Type Process name GPU Memory ID ID Usage
No running processes found
~oot@a100 000081005 4-20C 1 ~]#

nvidia-smi 正常显示信息

```
[root@a100_000081005_4-20C_1 ~]# cd bir
[root@a100_000081005_4-20C_1 bin]# ls
 compare.ptx gpu_burn
[root@a100_000801005_4-20C_1 bin]# ./gpu_burn 5
GPU 0: GRID A100-4C (UUID: GPU-01bd2cb9-f5b5-11eb-87db-9d30a27a9dc2)
Initialized device 0 with 4091 MB of memory (3012 MB available, using 2711 MB of it), using FLOATS 20.0% proc'd: 167 (2446 Gflop/s) errors: 0 temps: --
Summary at: Thu Aug 5 02:33:46 EDT 2021
40.0% proc'd: 835 (17087 Gflop/s) errors: 0 temps: --
                          Thu Aug 5 02:33:47 EDT 2021
         Summary at:
60.0% proc'd: 1670 (16978 Gflop/s) errors: 0 temps: --
Summary at: Thu Aug 5 02:33:48 EDT 2021
80.0% proc'd: 2672 (16986 Gflop/s) errors: 0 temps: --
         Summary at: Thu Aug 5 02:33:49 EDT 2021
100.0% proc'd: 3674 (16985 Gflop/s) errors: 0 temps: --
         Summary at: Thu Aug 5 02:33:50 EDT 2021
100.0% proc'd: 4676 (16787 Gflop/s) errors: 0 temps: --
Killing processes.. Freed memory for dev 0
Uninitted cublas
done
Tested 1 GPUs:
         GPU 0: OK
[root@a100 000081005 4-20C 1 bin]#
```

CUDA 测试正常。

4.4. 总结

基于 SR-IOV 的 vGPU 和之前非 SR-IOV 的配置区别主要体现在: 1. 对 SR-IOV 硬件和 Kernel 参数的使能。2. 必须使能 GPU 的 SR-IOV 配置。3. 一个 vGPU 实例对应且仅对应 一个 GPU VF 设备。4. VM 的设备添加、驱动程序安装以及使用与非 SR-IOV 方式相同。 不限于 vCS 类型的 vGPU, 也适用于 vPC 和 vWS。