

 | September 2020

NVIDIA Virtual Compute Server for Red Hat
Enterprise Linux with KVM

Deployment Guide

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | ii

Document History

DU-10130-001_v01

Version Date Authors Description of Change
01 September 4, 2020 AS, EA Initial Release

02 October 2, 2020 AS, EA, DS RHEL build out

03 December 16, 2020 AS Technical feedback and RH feedback

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | iii

Table of Contents

Chapter 1. Executive Summary.. 1
1.1 What is NVIDIA Virtual Compute Server ... 1
1.2 Why NVIDIA vGPU? ... 1
1.3 NVIDIA vGPU Architecture .. 2
1.4 Supported GPUs .. 4
1.5 Virtual GPU Types .. 5
1.6 General Prerequisites .. 5

1.6.1 Server Configuration ... 6

Chapter 2. Installing Red Hat Enterprise with KVM .. 7
2.1 Choosing the Installation method ... 7
2.2 Preparing USB Boot Media .. 7
2.3 Installing RHEL with KVM .. 8
2.4 Initial Host Configuration .. 22
2.5 Verify Host Configuration .. 34

Chapter 3. vGPU Configuration and Policies .. 35
3.1 Getting the BDF and Domain of a GPU.. 35
3.2 Creating the vGPU Instance(s) ... 36
3.3 Changing the vGPU Scheduling Policy ... 38

3.3.1 vGPU Scheduling Policies .. 38
3.3.2 RmPVMRL Registry Key ... 39
3.3.3 Changing the vGPU Scheduling Policy for All GPUs .. 39
3.3.4 Changing the vGPU Scheduling Policy for Select GPUs... 41
3.3.5 Restoring Default vGPU Scheduler Settings ... 42

3.4 Disabling and Enabling ECC Memory .. 42
3.4.1 Disabling ECC Memory .. 43
3.4.2 Enabling ECC Memory ... 44

Chapter 4. Deploying the NVIDIA vGPU Software License Server 46
4.1 Platform Requirements ... 46

4.1.1 Hardware and Software Requirements .. 46
4.1.2 Platform Configuration Requirements.. 46
4.1.3 Network Ports and Management Interface .. 47

4.2 Installing the NVIDIA vGPU Software License Server on Windows ... 47
4.2.1 Installing the Java Runtime Environment on Windows .. 47
4.2.2 Installing the License Server Software on Windows ... 49
4.2.3 Obtaining the License Server’s MAC Address ... 51
4.2.4 Managing your License Server and Getting your License Files ... 52

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | iv

4.2.4.1 Creating a Licenser Server on the NVIDIA Licensing Portal 52
4.2.4.2 Downloading a License File ... 54

4.2.5 Installing a License .. 55

Chapter 5. Creating Your First NVIDIA Virtual Compute Server VM 57
5.1 Creating the VM .. 57
5.2 Attach the vGPU profile to the VM ... 61
5.3 Installing Ubuntu Server 18.04.5 LTS .. 62
5.4 Installing the NVIDIA Driver in the Ubuntu Virtual Machine... 66
5.5 Licensing an NVIDIA vGPU ... 67

Chapter 6. Selecting the Correct vGPU Profiles .. 69
6.1 The Role of the vGPU Manager ... 69
6.2 vGPU Profiles for NVIDIA Virtual Compute Server .. 69

Chapter 7. GPU Aggregation for NVIDIA Virtual Compute Server 71
7.1 Multi vGPU .. 71
7.2 Peer-to-Peer NVIDIA NVLINK ... 71
7.3 GPUDirect Technology Support ... 73

Chapter 8. Page Retirement and ECC ... 74

Chapter 9. NVIDIA Multi-Instance GPU Configuration for KVM 75
9.1 Terminology ... 77

9.1.1 GPU Context .. 77
9.1.2 GPU Engine ... 77
9.1.3 GPU Memory Slice .. 78
9.1.4 GPU SM Slice ... 78
9.1.5 GPU Slice ... 78
9.1.6 GPU Instance ... 78
9.1.7 Compute Instance ... 78

9.2 MIG Prerequisites .. 79
9.2.1 Enable MIG Mode ... 79
9.2.2 List GPU Instance Profiles ... 80
9.2.3 Creating GPU Instances ... 81
9.2.4 VM Configuration .. 81
9.2.5 Optional: Creating Compute Instances ... 82
9.2.6 Optional: Update Containers for MIG Enabled vGPU ... 83

Chapter 10. Installing Docker and The Docker Utility Engine for NVIDIA GPUs 84
10.1 Enabling the Docker Repository and Installing the NVIDIA Container Toolkit 84
10.2 Testing Docker and NVIDIA Container Run Time .. 85

Chapter 11. Testing and Benchmarking ... 86
11.1 TensorRT RN50 Inference .. 86

11.1.1 Commands to the Run Test .. 86

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | v

11.1.2 Interpreting the Results .. 87
11.2 TensorFlow RN50 Mixed Training ... 87

11.2.1 Commands to Run the Test .. 87
11.2.2 Interpreting the Results .. 87

Chapter 12. Troubleshooting .. 88
12.1 Forums ... 88
12.2 Filing a Bug Report... 88

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 1

Chapter 1. Executive Summary

This document provides insights into how to deploy NVIDIA Virtual Compute Server on Red Hat
Virtualization/Red Hat Enterprise Linux (RHEL) and serves as a technical resource for understanding
system pre-requisites, installation, and configuration.

1.1 What is NVIDIA Virtual Compute Server
NVIDIA Virtual Compute Server enables the benefits of hypervisor-based server virtualization for GPU
accelerated servers. Data center admins are now able to power any compute-intensive workload with
GPUs in a virtual machine (VM).

NVIDIA Virtual Compute Server software virtualizes NVIDIA GPUs to accelerate large workloads,
including more than 600 GPU accelerated applications for AI, deep learning, and high-performance
computing (HPC). With GPU sharing, multiple VMs can be powered by a single GPU, maximizing
utilization and throughput, or a single VM can be powered by multiple virtual GPUs, making even the
most intensive workloads manageable. With support for all major hypervisor virtualization platforms,
including Red Hat RHV/RHEL and VMware vSphere, data center administrators can use the same
management tools for their GPU-accelerated servers as they do for the rest of their data center.

NVIDIA Virtual Compute Server supports the NVIDIA NGC (NVIDIA GPU Cloud) GPU-optimized
repository for deep learning, machine learning, and HPC. NGC software includes containers for the
top AI and data science software, tuned, tested, and optimized by NVIDIA, as well as fully tested
containers for HPC applications and data analytics.

 NVIDIA Virtual Compute Server is not tied to a user with a display. It is licensed per GPU as a 1-year
subscription with NVIDIA enterprise support included. This allows a number of compute workloads in
multiple VMs to be run on a single GPU, maximizing utilization of resources and ROI.

For more information regarding NVIDIA Virtual Compute Server please refer to the NVIDIA Virtual
Compute Server Solution Overview.

1.2 Why NVIDIA vGPU?
NVIDIA Virtual Compute Server (NVIDIA vCS) can power the most compute-intensive workloads with
virtual GPUs. NVIDIA vCS software is based upon NVIDIA virtual GPU (vGPU) technology, and includes
the NVIDIA compute driver, which is required by compute-intensive operations. NVIDIA vGPU enables

http://nvidia.ngc.com/
https://images.nvidia.com/content/grid/pdf/nvidia-vcomputeserver-solution-overview.pdf
https://images.nvidia.com/content/grid/pdf/nvidia-vcomputeserver-solution-overview.pdf

Executive Summary

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 2

multiple virtual machines (VMs) to have simultaneous, direct access to a single physical GPU, or GPUs
can be aggregated within a single VM. vGPU uses the same NVIDIA drivers that are deployed on non-
virtualized operating systems. By doing so, NVIDIA vGPU provides VMs with high performance
compute and application compatibility, as well as cost-effectiveness and scalability since multiple VMs
can be customized to specific tasks that may demand more or less GPU compute or memory.
With NVIDIA vCS you can gain access to the most powerful GPUs in a virtualized environment and gain
vGPU software features such as:
 Management and monitoring – streamline data center manageability by leveraging hypervisor-

based tools.
 Security – Extend the benefits of server virtualization to GPU workloads.
 Multi-Tenant – Isolate workloads and securely support multiple users.

1.3 NVIDIA vGPU Architecture
The high-level architecture of an NVIDIA virtual GPU-enabled VDI environment is illustrated below in
Figure 1.1. Here, the GPUs in the server, and the NVIDIA vGPU Manager software (.RPM file) is
installed on the host server. This software enables multiple VMs to share a single GPU, or if there are
multiple GPU’s in the server, they can be aggregated so that a single VM can access multiple GPUs.

This GPU enabled environment provides not only unprecedented performance, but also enables
support for more users on a server because work that is typically done by the CPU can be offloaded to
the GPU. Physical NVIDIA GPUs can support multiple virtual GPUs (vGPUs) and be assigned directly to
guest VMs under the control of NVIDIA’s Virtual GPU Manager running in a hypervisor.

Guest VMs use NVIDIA vGPUs in the same manner as physical GPUs that have been passed through by
the hypervisor. For NVIDIA vGPU deployments, the NVIDIA vGPU software automatically selects the
correct type of license based on the vGPU type assigned.

Executive Summary

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 3

Figure 1.1 NVIDIA vGPU Platform Solution Architecture

NVIDIA vGPUs are comparable to conventional GPUs in that they have a fixed amount of GPU
Memory and one or more virtual display outputs or heads. Multiple heads support multiple displays.
Managed by the NVIDIA vGPU Manager installed in the hypervisor, the vGPU Memory is allocated out
of the physical GPU frame buffer at the time the vGPU is created. The vGPU retains exclusive use of
that GPU Memory until it is destroyed.

All vGPUs resident on a physical GPU share access to the GPU’s engines, including the graphics (3D)
and video decode and encode engines. Figure 1.2 shows the vGPU internal architecture. The VM’s
guest OS leverages direct access to the GPU for performance and critical fast paths. Non-critical
performance management operations use a para-virtualized interface to the NVIDIA Virtual GPU
Manager.

Executive Summary

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 4

Figure 1.2 NVIDIA vGPU Internal Architecture

1.4 Supported GPUs
NVIDIA virtual GPU software is supported with NVIDIA data center GPUs. For a list of certified servers
with NVIDIA GPUs, consult the NVIDIA vGPU Certified Servers page. Please refer to the NVIDIA vCS
solution brief for a full list of recommended and supported GPUs. Each card requires auxiliary power
cables connected to it (except NVIDIA P4 & T4).

Most industry standard servers require an enablement kit for proper mounting of NVIDIA cards.
Check with your server OEM of choice for more specific requirements.
The maximum number of vGPUs that can be created simultaneously on a physical GPU varies on a
card-by-card basis. A complete list of maximum vGPUs per GPU is located here. For example, an
NVIDIA V100 PCIe 32 GB GPU that has 32 GB of GPU Memory, can support up to six 8C profiles (32 GB
total with 4 GB per VM). You cannot oversubscribe GPU memory, and it must be shared equally for
each physical GPU. If you have multiple GPUs installed in a server, you have the flexibility to allocate
each physical GPU appropriately to meet your users demands.

https://www.nvidia.com/en-us/data-center/resources/vgpu-certified-servers/
https://images.nvidia.com/content/grid/pdf/nvidia-vcomputeserver-solution-overview.pdf
https://images.nvidia.com/content/grid/pdf/nvidia-vcomputeserver-solution-overview.pdf
https://docs.nvidia.com/grid/11.0/grid-vgpu-user-guide/index.html#supported-gpus-grid-vgpu

Executive Summary

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 5

1.5 Virtual GPU Types
vGPUs have a fixed amount of GPU Memory, number of supported displays, and maximum resolution.
vGPU types are grouped into different series according to the different classes of workload for which
they are optimized. Each series is identified by the last letter of the vGPU type name.

Series Optimal Workload
Q-series Virtual workstations for creative and technical professionals who require the

performance and features of NVIDIA RTX Enterprise drivers

C-series Compute-intensive server workloads, such as artificial intelligence (AI), deep learning
(DL), or high-performance computing (HPC)

B-series Virtual desktops for business professionals and knowledge workers

A-series App streaming or session-based solutions for virtual applications users

NVIDIA vCS uses the C-Series vGPU profiles. Please refer to the NVIDIA vCS solution brief for more
information regarding the available profiles.

1.6 General Prerequisites
Prior to installing and configuring vGPU software for NVIDIA vCS it is important to document an
evaluation plan. This can consist of the following:
 A list of your business drivers and goals
 A list of all the user groups, their workloads, and applications with current, and future projections

in consideration
 Current end-user experience measurements and analysis
 ROI / Density goals

If you are new to virtualization it is recommended to review Red Hat Enterprise Linux Visualization
Deployment and Administration Guide.
The following elements are required to install and configure vGPU software on Red Hat Enterprise
Linux with KVM.
 NVIDIA certified servers with NVIDIA GPUs

• High-speed RAM
• Fast networking
• If using local storage, IOPS plays a major role in performance
• Intel Xeon E5-2600 v4, Intel Xeon Scalable Processor Family with 2.6GHz CPU or faster.

 Select the appropriate NVIDIA GPU for your use case. Please refer to the NVIDIA vCS solution
brief for a full list of recommended and supported GPUs.

 Red Hat Enterprise Linux with KVM. For a list of supported versions, please refer to the vGPU
software documentation.

 NVIDIA vCS software and license (free trial license available).
 NVIDIA vGPU Manager RPM

https://images.nvidia.com/content/grid/pdf/nvidia-vcomputeserver-solution-overview.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/pdf/virtualization_deployment_and_administration_guide/Red_Hat_Enterprise_Linux-7-Virtualization_Deployment_and_Administration_Guide-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/pdf/virtualization_deployment_and_administration_guide/Red_Hat_Enterprise_Linux-7-Virtualization_Deployment_and_Administration_Guide-en-US.pdf
https://images.nvidia.com/content/grid/pdf/nvidia-vcomputeserver-solution-overview.pdf
https://images.nvidia.com/content/grid/pdf/nvidia-vcomputeserver-solution-overview.pdf
https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-vmware-vsphere/index.html#hypervisor-software-versions
https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-vmware-vsphere/index.html#hypervisor-software-versions
https://www.nvidia.com/en-us/data-center/free-trial-virtual-gpu/

Executive Summary

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 6

• NVIDIA WDDM guest driver
• NVIDIA Linux guest driver

Note: The vGPU Manager RPM is loaded like a driver in the RHEL hypervisor.

For testing and benchmarking you may leverage the NVIDIA System Management interface (NV-SMI)
management and monitoring tool.

1.6.1 Server Configuration
The following server configuration details are considered best practices:
 Hyperthreading – Enabled
 Power Setting or System Profile – High Performance
 CPU Performance (if applicable) – Enterprise or High Throughput
 Memory Mapped I/O above 4 GB - Enabled (if applicable)

Note: If NVIDIA card detection does not include all of the installed GPUs, set SR-IOV option to Enabled.

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 7

Chapter 2. Installing Red Hat Enterprise with
KVM

This chapter covers the following RHEL with KVM installation topics:
 Choosing the Installation Method
 Preparing USB Boot Media
 Installing RHEL KVM
 Initial Host Configuration

Note: This deployment guide assumes you are building an environment as proof of concept and not for
production deployment. Consequently, some choices are made to speed up and ease the process. See
the corresponding guides for each technology, and make choices appropriate for your needs, before
building your production environment.

For this guide, RHEL 8.3 with KVM is used, Red Hat Virtualization (RHV) installation setups are
reasonably similar.

2.1 Choosing the Installation Method
RHEL can be installed from USB boot media, from optical media, or over a network. NVIDIA’s lab used
Supermicro’s IPMI and virtual media to boot from an ISO file and install on local storage. Network
installation via PXE booting is beyond the scope of this guide but be aware of it as it can ease mass
deployments in environments like datacenters.

2.2 Preparing USB Boot Media
For more information, see the Red Hat installation guide.
Installation via boot media is the easiest way to install RHEL to a local server.

1. Download the latest ISO file from Red Hat’s site. Download the latest ISO file from the Red Hat’s
site.

2. Insert your USB device in your computer.

3. From terminal, use the dd command to image the USB device:

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/index
https://developers.redhat.com/products/rhel/download
https://developers.redhat.com/products/rhel/download
https://developers.redhat.com/products/rhel/download

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 8

dd if=/<download_directory>/<latest_image>.iso of=/dev/[device] bs=512k

4. Replace <download_directory> with the location of the ISO file and <latest_image> with the name
of the latest image. Device is the name of your USB devices mount point.

Note: This deployment guide assumes you are using a Linux environment. If you need to create a USB
installation media from Windows or Mac OS, Red Hat recommends you use the Fedora Media builder.
Instructions are available from Red Hat. Instructions are available from Red Hat. RUFUS is also a
recommended option for Windows users.

2.3 Installing RHEL with KVM
Use the following procedure to install RHEL with KVM. Select the USB boot media with the RHEL ISO
from your host’s boot menu.
1. Apply power to start the host and select your USB media to boot. Consult your server vendor’s

documentation to set boot options.

2. Select Install Red Hat Enterprise Linux from the boot menu and press ENTER.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-making-usb-media#sect-making-usb-media-windows
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-making-usb-media#sect-making-usb-media-windows
https://rufus-usb.en.uptodown.com/windows

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 9

3. Select your desired language. This guide uses English (United States).

4. Once you arrive at the main installation screen, there are a few options to configure.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 10

5. Networking is the first thing to configure. Click Network & Host Name.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 11

6. Give your server a unique hostname in the lower right corner. Enable the network adapter that

provides Internet server to your server (in the above example, eth0). If no DHCP is available on
your network, enter your network details manually. When the Ethernet configuration is complete,
click Done in the top left corner.

7. Select Date & Time to set time and date.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 12

8. Set your time zone and enable Network Time (in the top right corner) as well. If no NTP

connection is available, set the date and time manually. An incorrect setting can lead to issues
with SSH, YUM, and other certificate-based services. When you are finished, click Done.

9. Now it is time to set a destination for our RHEL installation. Click Installation Destination.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 13

10. By default, the installer selects your first logical drive for your virtual disk and uses the whole

drive. You may want to select a different logical drive and a smaller space allocation for a real
installation. Be aware that the installation process erases this drive, and any data previously on
the drive will be lost. Click Done.

11. Next you configure the installer to install the virtualization platform you need to leverage vGPU.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 14

12. From the Base Environment list, select Server with GUI. In the Additional software list,

check Virtualization Client, Virtualization Hypervisor, Virtualization Tools, and System
Administration Tools. This gives us basic hypervisor setup. Click Done. The installer checks
dependencies to determine what packages it needs to download. Then it verifies that it can
download all of them.

13. Select Connect to Red Hat.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 15

14. You must now register this system with Red Hat’s entitlement server to receive updates and

packages from their repo. Enter the credentials for your Red Hat account or Red Hat Developer
Program membership. Then click Register. Red Hat gives you a list of subscriptions that are
available for you to attach. Choose the appropriate one, then click Next. Once you have
successfully registered with Red Hat, the Connect to Red Hat interface will automatically refresh
with the information below:

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 16

15. You are now ready to start the installation. Click Begin Installation.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 17

16. While you are waiting for installation to be completed, you can complete two critical tasks.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 18

17. First, we need to set a root password. Choose a secure password. This password will grant you

root privileges.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 19

18. Second, create our primary user account.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 20

19. Choose an appropriate username and password. Best practice is to use a different password from
your root password. Make sure to check Make this user administrator and Require a password to
use this account. Click Done when finished. Now we wait for the installation to finish.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 21

20. The installation is now complete. Click Reboot. RHEL install is complete and ready to use.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 22

2.4 Initial Host Configuration
Now that we are finished with the installation of the host OS itself, we need to configure it for use as
a virtualization host.

1. Once the server finishes rebooting, you will be presented with the initial setup screen.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 23

2. We need to accept the terms of the software license. Click License Information. Then accept the

license agreements if you accept the terms.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 24

3. Click Done, then click Finish Configuration.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 25

4. Once you have completed the initial setup, you will be presented with a login screen. Log in with

the credentials you created in Step 2.3.18.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 26

5. We will need to complete basic user account setup.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 27

6. Select the language of your choice. This guide assumes you choose English. Click Next.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 28

7. Select your keyboard layout of choice and click Next. This guide will proceed with the default

(English US).
8. Click Next for location services.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 29

9. Click Skip to skip connecting online accounts. NVIDIA does not recommend attaching online
personal accounts to a server.

10. Click Start Using Red Hat Enterprise Linux Server. Exit the Getting Started guide.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 30

11. Run the Terminal app. You can search for it in the Activities menu.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 31

It can be found from the Applications menu (top left of desktop) in the category System Tools.

Note: The terminal is a fundamental part of system administration in Linux-based distributions like
RHEL. You can find more information and links to guides in this Red Hat article.

12. Best practice is to install the latest updates, then reboot. Use the following commands. Input your

root password when it is requested.

sudo yum check-update
sudo yum update -y
sudo reboot

Note: The Sudo command (i.e., super user do) allows you to run commands at the superuser or root level.
This is necessary for many tasks involving system level access, such as installing packages,
system updates, configuration changes, and other critical functions. Sudo should only be used when you
understand and trust the commands or programs being executed. You can cause damage or expose your
server to security risks if you use the sudo command inappropriately or incorrectly.

https://www.redhat.com/sysadmin/terminals-shells-consoles

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 32

13. Once the system is rebooted, log in again and reopen the Terminal app. We need to start

installing the NVIDIA vGPU manager which comes in the form of an RPM package. Transfer the
RPM file over your server into your working directory. Make sure you are in the same directory
you uploaded the .RPM file into. Run the following commands:

sudo rpm -iv NVIDIA-vGPU-rhel-<version>.x86_64.rpm

Where <version> is the version number of the vGPU files you have.

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 33

 Note: You can transfer the RPM file via scp if your files reside on a remote Linux machine. If you have a

remote Windows machine, you can use WinSCP to transfer them (see Appendix A).

14. Once you have been returned to the command prompt, initiate another reboot.

sudo reboot

15. After the host completes its reboot, blacklist the Nouveau driver.

a) Open the blacklist.conf located in /etc/modprobe.d directory:
nano /etc/modprobe.d/blacklist-nouveau.conf

b) Add the following to the file:
blacklist nouveau
blacklist lbm-nouveau
options nouveau modeset=0
alias nouveau off
alias lbm-nouveau off

c) Next you will need to rebuild the GRUB file:
EFI: grub2-mkconfig -o /boot/efi/EFI/Red Hat/grub.cfg
Legacy: grub2-mkconfig -o /boot/grub2/grub.cfg

d) After the GRUB file rebuild is complete, you will need to rebuild the initramfs:
dracut -f

Installing Red Hat Enterprise with KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 34

e) The final step is to restart the server:
reboot

2.5 Verify Host Configuration
Now that all configuration is complete, we need to verify that everything is configured properly and
that all necessary hardware is detected.

1. Verify that the libvirtd service is active and running.
Ssystemctl status libvirtd

2. Verify that the vGPU Manager package is installed correctly.
lsmod | grep nvidia_vgpu_vfio
Sample output:
nvidia_vgpu_vfio 27099 0
nvidia 12316924 1 nvidia_vgpu_vfio
vfio_mdev 12841 0
mdev 20414 2 vfio_mdev,nvidia_vgpu_vfio
vfio_iommu_type1 22342 0
vfio 32331 3 vfio_mdev,nvidia_vgpu_vfio,vfio_iommu_type1

3. Verify that your Nvidia GPU(s) are detected correctly.
nvidia-smi

Sample output:
[root@vgpu10:~] nvidia-smi
Wed Jan 13 19:48:05 2021
+---+
| NVIDIA-SMI 450.55 Driver Version: 450.55 CUDA Version: N/A |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla T4 On	00000000:81:00.0 Off	Off
N/A 33C P8 15W / 70W	79MiB / 16383MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
1 Tesla T4 On	00000000:C5:00.0 Off	Off
N/A 31C P8 15W / 70W	79MiB / 16383MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 35

Chapter 3. vGPU Configuration and Policies

This chapter covers configuring the NVIDIA vGPU Manager:
 Locating the hardware information of the physical GPU
 Creating a vGPU
 Changing the vGPU Scheduling Policy
 Disabling and enabling ECC memory on the vGPU

3.1 Getting the BDF and Domain of a GPU
Now that our host is installed, we must create the vGPU instance(s). To do so, we’ll need to get the
hardware information of our physical GPUs.

Sometimes when configuring a physical GPU for use with NVIDIA vGPU software, you must find out
which directory in the sysfs file system represents the GPU. This directory is identified by the domain,
bus, slot, and function of the GPU. For more information about the directory in the sysfs file system
represents a physical GPU, see NVIDIA vGPU Information in the sysfs File System.

1. Open Terminal

2. Obtain the PCI device bus/device/function (BDF) of the physical GPU via command:
lspci | grep NVIDIA

The NVIDIA GPUs listed in this example have the PCI device BDFs 06:00.0 and 07:00.0.

lspci | grep NVIDIA
06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla T4]
(rev a1)
07:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla T4]
(rev a1)

3. Obtain the full identifier of the GPU from its PCI device BDF via command:
virsh nodedev-list --cap pci| grep <transformed-bdf>

The <transformed-bdf> is the PCI device BDF of the GPU with the colon and the period
replaced with underscores, for example, 06_00_0. This example obtains the full identifier of the
GPU with the PCI device BDF 06:00.0.

virsh nodedev-list --cap pci| grep 06_00_0
pci_0000_06_00_0

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 36

4. Obtain the domain, bus, slot, and function of the GPU from the full identifier of the GPU.

virsh nodedev-dumpxml full-identifier| egrep 'domain|bus|slot|function'
full-identifier

The full identifier of the GPU that you obtained in the previous step, for example, pci_0000_06_00_0.
This example obtains the domain, bus, slot, and function of the GPU with the PCI device BDF 06:00.0.

virsh nodedev-dumpxml pci_0000_06_00_0| egrep 'domain|bus|slot|function'
<domain>0x0000</domain>
<bus> 0x06</bus>
<slot>0x00</slot>
<function>0x0</function>
 <address domain='0x0000' bus='0x06' slot='0x00' function='0x0'/>

3.2 Creating the vGPU Instance(s)
Once you have the hardware information for the physical GPU, we can create the vGPU.

For each vGPU that you want to create, you will need to perform these steps from Terminal on the
Red Hat Enterprise Linux KVM host. Please note that the mdev device file that you create to represent
the vGPU does not persist when the host is rebooted but must be recreated after each reboot. If
necessary, you can use standard features of the operating system to automate the creation of this
device file when the host is booted, for example, by writing a custom script that is executed when the
host is rebooted. Before you begin, ensure that you have the domain, bus, slot, and function of the
GPU on which you are creating the vGPU.

1. Change to the mdev_supported_types directory for the physical GPU.

cd
/sys/class/mdev_bus/[domain]\:[bus]\:slot.[function]/mdev_supported_types
/

The [domain], [bus], [slot], and [function] of the GPU, without the 0x prefix. This example changes
to the mdev_supported_types directory for the GPU with the domain 0000 and PCI device BDF
06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported_types/

2. Find out which subdirectory of mdev_supported_types contain registration information for the

vGPU type that you want to create.

grep -l "[vgpu-type]" nvidia-*/name

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 37

Replace [vgpu-type] with the vGPU type, for example, M10-2Q. This example shows that the
registration information for the M10-2Q vGPU type is contained in the nvidia-41 subdirectory of
mdev_supported_types.

grep -l "M10-2Q" nvidia-*/name
nvidia-41/name

3. Confirm that you can create an instance of the vGPU type on the physical GPU.

cat [subdirectory]/available_instances

Replace [subdirectory] with the directory that you found in the previous step, for example, nvidia-
41. The number of available instances must be at least 1. If the number is 0, either an instance of
another vGPU type already exists on the physical GPU, or the maximum number of allowed
instances has already been created. This example shows that four more instances of the M10-2Q
vGPU type can be created on the physical GPU.
cat nvidia-41/available_instances
4

4. Generate a correctly formatted universally unique identifier (UUID) for the vGPU using uuidgen.

uuidgen
aa618089-8b16-4d01-a136-25a0f3c73123

5. Write the UUID that you obtained in the previous step to the create file in the registration

information directory for the vGPU type that you want to create.

echo "[uuid]"> [subdirectory]/create

The [uuid] that you generated in the previous step, which will become the UUID of the vGPU that
you want to create.
The [subdirectory] is the registration information directory for the vGPU type that you want to
create, for example, nvidia-41. This example creates an instance of the T4-8Q vGPU type with
the UUID aa618089-8b16-4d01-a136-25a0f3c73123:

echo "aa618089-8b16-4d01-a136-25a0f3c73123" > nvidia-41/create

An mdev device file for the vGPU is added is added to the parent physical device directory of the
vGPU. The vGPU is identified by its UUID. The /sys/bus/mdev/devices/ directory contains a
symbolic link to the mdev device file.

6. Confirm that the vGPU was created with ls -l /sys/bus/mdev/devices/.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 38

ls -l /sys/bus/mdev/devices/
total 0
lrwxrwxrwx. 1 root root 0 Nov 24 13:33 aa618089-8b16-4d01-a136-
25a0f3c73123 –
> ../../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0/ aa618089-
8b16-4d01-a136-25a0f3c73123

7. This vGPU is now ready for use. We will attach it to a Virtual Machine once the VM is created.

3.3 Changing the vGPU Scheduling Policy
GPUs, starting with the NVIDIA® Maxwell™ architecture, implement a best-effort vGPU scheduler that
aims to balance performance across vGPUs by default. The best-effort scheduler allows a vGPU to use
GPU processing cycles that are not being used by other vGPUs. Under some circumstances, a VM
running a graphics-intensive application may adversely affect the performance of graphics-light
applications running in other VMs.

GPUs, starting with the NVIDIA® Pascal™ architecture, also support equal-share and fixed-share vGPU
schedulers. These schedulers impose a control on GPU processing cycles used by a vGPU which
prevents graphics-intensive applications running in one VM from affecting the performance of
graphics-light applications running in other VMs. The best-effort scheduler is the default scheduler for
all supported GPU architectures.

The GPUs that are based on the Pascal architecture are the NVIDIA P4, NVIDIA P6, NVIDIA P40, and
NVIDIA P100.

The GPUs that are based on the Volta™ architecture are the NVIDIA V100 SXM2, NVIDIA V100 PCIe,
NVIDIA V100 FHHL, and NVIDIA V100s.

The GPUs that are based on the Turing™ architecture are the NVIDIA T4, RTX 6000 and RTX 8000.

The GPUs that are based on the Ampere™ architecture are the NVIDIA A100, and A40.

3.3.1 vGPU Scheduling Policies
In addition to the default best effort scheduler, GPUs based on the Pascal and Volta architectures
support equal share and fixed share vGPU schedulers.

 Fixed share scheduling always guarantees the same dedicated quality of service. The fixed share
scheduling policies guarantee equal GPU performance across all vGPUs sharing the same physical
GPU. Dedicated quality of service simplifies a POC since it allows the use of common benchmarks
used to measure physical workstation performance such as SPECviewperf, to compare the
performance with current physical or virtual workstations.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 39

 Best effort scheduling provides consistent performance at a higher scale and therefore reduces
the TCO per user. The best effort scheduler leverages a round-robin scheduling algorithm which
shares GPU resources based on actual demand which results in optimal utilization of resources.
This results in consistent performance with optimized user density. The best effort scheduling
policy best utilizes the GPU during idle and not fully utilized times, allowing for optimized density
and a good QoS.

 Equal share scheduling provides equal GPU resources to each running VM. As vGPUs are added or
removed, the share of GPU processing cycles allocated changes, accordingly, resulting in
performance to increase when utilization is low, and decrease when utilization is high.

3.3.2 RmPVMRL Registry Key
The RmPVMRL registry key sets the scheduling policy for NVIDIA vGPUs.

 Note: You can change the vGPU scheduling policy only on GPUs based on the Pascal, Volta, Turing, and
Ampere architectures.

Type
Dword
Contents

Value Meaning

0x00 (default) Best effort scheduler

0x01 Equal share scheduler with the default time slice length

0x00TT0001 Equal share scheduler with a user-defined time slice length TT

0x11 Fixed share scheduler with the default time slice length

0x00TT0011 Fixed share scheduler with a user-defined time slice length TT

Examples
The default time slice length depends on the maximum number of vGPUs per physical GPU allowed
for the vGPU type.

Maximum Number of vGPUs Default Time Slice Length

Less than or equal to 8 2 ms

Greater than 8 1 ms

TT

 Two hexadecimal digits in the range 01 to 1E that set the length of the time slice in
milliseconds (ms) for the equal share and fixed share schedulers. The minimum length is 1
ms and the maximum length is 30 ms.

 If TT is 00, the length is set to the default length for the vGPU type.

https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#rmpvmrl-registry-key

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 40

 If TT is greater than 1E, the length is set to 30 ms.
Examples
This example sets the vGPU scheduler to equal share scheduler with the default time slice length.
RmPVMRL=0x01
This example sets the vGPU scheduler to equal share scheduler with a time slice that is 3 ms long.
RmPVMRL=0x00030001
This example sets the vGPU scheduler to fixed share scheduler with the default time slice length.
RmPVMRL=0x11
This example sets the vGPU scheduler to fixed share scheduler with a time slice that is 24 (0x18) ms
long.
RmPVMRL=0x00180011

3.3.3 Changing the vGPU Scheduling Policy for All GPUs
 Note: You can change the vGPU scheduling policy only on GPUs based on the Pascal, Volta, Turing, and

Ampere architectures.

Perform this task in your hypervisor command shell.
1. Open a command shell as the root user on your hypervisor host machine. On all supported

hypervisors, you can use secure shell (SSH) for this purpose. Set the RmPVMRL registry key to
specify the GPU scheduling policy you want.

2. Add an entry to the /etc/modprobe.d/nvidia.conf file.

options nvidia NVreg_RegistryDwords=”RmPVMRL=>value>"

Where <value> is the value that sets the vGPU scheduling policy you want, for example:

a) 0x00 - Equal Share Scheduler with the default time slice length
b) 0x00030001 - Equal Share Scheduler with a time slice of 3 ms
c) 0x011 - Fixed Share Scheduler with the default time slice length
d) 0x00180011 - Fixed Share Scheduler with a time slice of 24 ms (0x18)

The default time slice length depends on the maximum number of vGPUs per physical GPU allowed
for the vGPU type.

Maximum Number of vGPUs Default Time Slice Length
Less than or equal to 8 2 ms
Greater than 8 1 ms

For all supported values, see RmPVMRL Registry Key.

3. Reboot your hypervisor host machine.

https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#rmpvmrl-registry-key

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 41

3.3.4 Changing the vGPU Scheduling Policy for Selected
GPUs

 Note: You can change the vGPU scheduling behavior only on GPUs that support multiple vGPU
schedulers, that is, GPUs based on NVIDIA GPU architectures after the Maxwell architecture.

Perform this task in your hypervisor command shell.

1. Open a command shell as the root user on your hypervisor host machine. On all supported

hypervisors, you can use secure shell (SSH) for this purpose.
2. Use the lspci command to obtain the PCI domain and bus/device/function (BDF) of each GPU for

which you want to change the scheduling behavior. Add the -D option to display the PCI domain
and the -d 10de: option to display information only for NVIDIA GPUs.

lspci -D -d 10de:

The NVIDIA GPUs listed in this example have the PCI domain 0000 and BDFs 85:00.0 and 86:00.0.
0000:85:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [M60] (rev a1)
0000:86:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [M60] (rev a1)

3. Use the module parameter NVreg_RegistryDwordsPerDevice to set

the pci and RmPVMRL registry keys for each GPU.

4. Add the following entry to the /etc/modprobe.d/nvidia.conf file.

options nvidia NVreg_RegistryDwordsPerDevice=”pci=pci-domain:pci-
bdf;RmPVMRL=value
[;pci=pci-domain:pci-bdf;RmPVMRL=value...]"

For each GPU, provide the following information:

 pci-domain
• The PCI domain of the GPU.

 pci-bdf
• The PCI device BDF of the GPU.

 value
• 0x00 - Sets the vGPU scheduling policy to Equal Share Scheduler with the default time slice

length.
• 0x00030001 - Sets the vGPU scheduling policy to Equal Share Scheduler with a time slice that

is 3ms long.
• 0x011 - Sets the vGPU scheduling policy to Fixed Share Scheduler with the default time slice

length.
• 0x00180011 - Sets the vGPU scheduling policy to Fixed Share Scheduler with a time slice that

is 24 ms (0x18) long.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 42

For all supported values, see RmPVMRL Registry Key.
This example adds an entry to the /etc/modprobe.d/nvidia.conf file to change the scheduling
behavior of two GPUs as follows:

 For the GPU at PCI domain 0000 and BDF 85:00.0, the vGPU scheduling policy is set to Equal Share
Scheduler.

 For the GPU at PCI domain 0000 and BDF 86:00.0, the vGPU scheduling policy is set to Fixed Share
Scheduler.
options nvidia NVreg_RegistryDwordsPerDevice=
"pci=0000:85:00.0;RmPVMRL=0x01;pci=0000:86:00.0;RmPVMRL=0x11"

5. Reboot your hypervisor host machine.

3.3.5 Restoring Default vGPU Scheduler Settings
Perform this task in your hypervisor command shell.
1. Open a command shell as the root user on your hypervisor host machine. On all supported

hypervisors, you can use secure shell (SSH) for this purpose.

2. Unset the RmPVMRL registry key by commenting out the entries in the
/etc/modprobe.d/nvidia.conf file that set RmPVMRL by prefixing each entry with the #
character.

3. Reboot your hypervisor host machine.

3.4 Disabling and Enabling ECC Memory
Some GPUs that support NVIDIA vGPU software support error correcting code (ECC) memory
with NVIDIA vGPU. ECC memory improves data integrity by detecting and handling double-bit errors.
However, not all GPUs, vGPU types, and hypervisor software versions support ECC memory
with NVIDIA vGPU.

On GPUs that support ECC memory with NVIDIA vGPU, ECC memory is supported with C-series and Q-
series vGPUs, but not with A-series and B-series vGPUs. Although A-series and B-series vGPUs start on
physical GPUs on which ECC memory is enabled, enabling ECC with vGPUs that do not support it may
incur some costs.

On physical GPUs that do not have HBM2 memory, the amount of frame buffer that is usable by
vGPUs is reduced. All types of vGPUs are affected, not just vGPUs that support ECC memory.

The effects of enabling ECC memory on a physical GPU are as follows:
 ECC memory is exposed as a feature on all supported vGPUs on the physical GPU.
 In VMs that support ECC memory, ECC memory is enabled, with the option to disable ECC in each

VM.
 ECC memory can be enabled or disabled for individual VMs. Enabling or disabling ECC memory in

a VM does not affect the amount of frame buffer that is usable by vGPUs.

https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#rmpvmrl-registry-key

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 43

GPUs based on the Pascal GPU architecture and later GPU architectures support ECC memory
with NVIDIA vGPU. These GPUs are supplied with ECC memory enabled. M60 and M6 GPUs support
ECC memory when used without GPU virtualization, but NVIDIA vGPU does not support ECC memory
with these GPUs. In graphics mode, these GPUs are supplied with ECC memory disabled by default.
Some hypervisor software versions do not support ECC memory with NVIDIA vGPU.
If you are using a hypervisor software version or GPU that does not support ECC memory with NVIDIA
vGPU and ECC memory is enabled, NVIDIA vGPU fails to start. In this situation, you must ensure that
ECC memory is disabled on all GPUs if you are using NVIDIA vGPU.

3.4.1 Disabling ECC Memory
If ECC memory is unsuitable for your workloads but is enabled on your GPUs, disable it. You must also
ensure that ECC memory is disabled on all GPUs if you are using NVIDIA vGPU with a hypervisor
software version or a GPU that does not support ECC memory with NVIDIA vGPU. If your hypervisor
software version or GPU does not support ECC memory and ECC memory is enabled, NVIDIA
vGPU fails to start.

Where to perform this task depends on whether you are changing ECC memory settings for a physical
GPU or a vGPU.
 For a physical GPU, perform this task from the hypervisor host.
 For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor. If you are
changing ECC memory settings for a vGPU, also ensure that the NVIDIA vGPU software graphics driver
is installed in the VM to which the vGPU is assigned.

Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC noted as enabled.
nvidia-smi -q

==============NVSMI LOG==============

Timestamp : Mon Jul 13 18:36:45 2020
Driver Version : 450.55

Attached GPUs : 1
GPU 0000:02:00.0

[...]

 Ecc Mode
 Current : Enabled
 Pending : Enabled

[...]

1. Change the ECC status to off for each GPU for which ECC is enabled.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 44

a) If you want to change the ECC status to off for all GPUs on your host machine or for vGPUs
assigned to the VM, run this command:

nvidia-smi -e 0
b) If you want to change the ECC status to off for a specific GPU or vGPU, run this command:

nvidia-smi -i <id> -e 0
c) Where <id> is the index of the GPU or vGPU as reported by nvidia-smi.

This example disables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 0
2. Reboot the host or restart the VM.
3. Confirm that ECC is now disabled for the GPU or vGPU.

nvidia—smi —q

==============NVSMI LOG==============

Timestamp : Mon Jul 13 18:37:53 2020
Driver Version : 450.55

Attached GPUs : 1
GPU 0000:02:00.0
[...]

 Ecc Mode
 Current : Disabled
 Pending : Disabled

[...]

3.4.2 Enabling ECC Memory
If ECC memory is suitable for your workloads and is supported by your hypervisor software and GPUs,
but is disabled on your GPUs or vGPUs, enable it.
Where to perform this task depends on whether you are changing ECC memory settings for a physical
GPU or a vGPU.
 For a physical GPU, perform this task from the hypervisor host.
 For a vGPU, perform this task from the VM to which the vGPU is assigned.

 Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor. If you are
changing ECC memory settings for a vGPU, also ensure that the NVIDIA vGPU software graphics driver
is installed in the VM to which the vGPU is assigned.

1. Use nvidia-smi to list the status of all physical GPUs or vGPUs and check for ECC noted as

disabled.
nvidia-smi -q

==============NVSMI LOG==============

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 45

Timestamp : Mon Jul 13 18:36:45 2020
Driver Version : 450.55

Attached GPUs : 1
GPU 0000:02:00.0

[...]

 Ecc Mode
 Current : Disabled
 Pending : Disabled

[...]
2. Change the ECC status to “Disabled” for each GPU or vGPU for which ECC is enabled.

a) If you want to change the ECC status to on for all GPUs on your host machine or vGPUs
assigned to the VM, run this command:
nvidia-smi -e 1

b) If you want to change the ECC status to on for a specific GPU or vGPU, run this command:
nvidia-smi -i <id> -e 1

c) <id> is the index of the GPU or vGPU as reported by nvidia-smi.
d) This example enables ECC for the GPU with index 0000:02:00.0.

nvidia-smi -i 0000:02:00.0 -e 1

3. Reboot the host or restart the VM.
4. Confirm that ECC is now enabled for the GPU or vGPU

nvidia—smi —q

==============NVSMI LOG==============

Timestamp : Mon Jul 13 18:37:53 2020
Driver Version : 450.55

Attached GPUs : 1
GPU 0000:02:00.0
[...]

 Ecc Mode
 Current : Enabled
 Pending : Enabled

[...]

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 46

Chapter 4. Deploying the NVIDIA vGPU
Software License Server

This chapter covers deployment of the NVIDIA vGPU software license server, including:
 Platform Requirements
 Installing the Java Runtime Environment on Windows
 Installing the License Server Software on Windows

4.1 Platform Requirements
Before proceeding, ensure that you have a platform suitable for hosting the license server.

4.1.1 Hardware and Software Requirements
 The hosting platform may be a physical machine, an on-premises virtual machine (VM), or a VM

on a supported cloud service. NVIDIA recommends using a host that is dedicated solely to running
the license server.

 The recommended minimum configuration is 2 CPU cores and 4 GB of RAM. A high-end
configuration of 4 or more CPU cores with 16 GB of RAM is suitable for handling up to 150,000
licensed clients.

 At least 1 GB of hard drive space is required.
 The hosting platform must run a supported operating system.
 On Window platforms, .NET Framework 4.5 or later is required.

4.1.2 Platform Configuration Requirements
 The platform must have a fixed (unchanging) IP address. The IP address may be assigned

dynamically by DHCP or statically configured but must be constant.
 The platform must have at least one fixed Ethernet MAC address, to be used as a unique identifier

when registering the server and generating licenses in the NVIDIA Licensing Portal.
 The platform’s date and time must be set accurately. NTP is recommended.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 47

4.1.3 Network Ports and Management Interface
The license server requires TCP port 7070 to be open in the platform’s firewall to serve licenses to
clients. By default, the installer automatically opens this port. The license server’s management
interface is web-based and uses TCP port 8080. The management interface itself does not implement
access control; instead, the installer does not open port 8080 by default, so that the management
interface is only available to web browsers running locally on the license server host. Access to the
management interface is therefore controlled by limiting remote access (via VNC, RDP, etc.) to the
license server platform.

Note: If you choose to open port 8080 during license server installation, or at any time afterwards, the
license server’s management interface is unprotected.

4.2 Installing the NVIDIA vGPU Software
License Server on Windows

The license server requires a Java runtime environment, which must be installed separately before
you install the license server.

4.2.1 Installing the Java Runtime Environment on
Windows

If a suitable Java runtime environment (JRE) version is not already installed on your system install a
supported JRE before running the NVIDIA license server installer.
1. Download a supported 64-bit JRE, either Oracle Java SE JRE or OpenJDK JRE.

a) Download Oracle Java SE JRE from the Java Downloads for All Operating Systems page.
b) Download Oracle Java SE JRE from the java.com: Java + You page
c) Download OpenJDK JRE from the Community builds using source code from OpenJDK project

on GitHub.
2. Install the JRE that you downloaded.

a) Oracle Java SE JRE installation:

https://www.java.com/
https://github.com/ojdkbuild/ojdkbuild#other-downloads

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 48

b) OpenJDK JRE installation:

3. Set the JAVA_HOME system variable to the full path to the “jre…” folder of your JRE installation.

a) For 64-bit Oracle Java SE JRE: C:\Program Files\Java\jre1.8.0_191
b) For 64-bit OpenJDK JRE: C:\Program Files\ojdkbuild\java-1.8.0-openjdk-

1.8.0.201-1\jre
Ensure that the path does not include any trailing characters, such as a slash or a space.
If you are upgrading to a new version of the JRE, update the value of JAVA_HOME to the full path
to the jre folder of your new JRE version.

4. Ensure that the path system variable contains the path to the java.exe executable file.
a) For 64-bit Oracle Java SE JRE: C:\Program Files\Java\jre1.8.0_191\bin

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 49

b) For 64-bit OpenJDK JRE: C:\Program Files\ojdkbuild\java-1.8.0-openjdk-
1.8.0.201-1\bin

4.2.2 Installing the License Server Software on
Windows

1. Unzip the license server installer and run setup.exe.
2. Accept the EULA for the license server software and the Apache Tomcat software used to support

the license server’s management interface.

3. Choose the destination folder where you want the license server software to be installed.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 50

4. In the Choose Firewall Options dialog box, select the ports to be opened in the firewall.

To enable remote clients to access licenses from the server and prevent remote access to the
management interface, use the default settings:
a) Port 7070 is open to enable remote clients to access licenses from the server.
b) Port 8080 is closed to ensure that the management interface is available only through a web

browser running locally on the license server host.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 51

5. After installation has completed successfully, click Done to exit the installer.

4.2.3 Obtaining the License Server’s MAC Address
The license server’s Ethernet MAC address uniquely identifies your server to the NVIDIA Licensing
Portal. You will need this address to register your license server with the NVIDIA Licensing Portal to
generate license files.

1. Open a web browser on the license server host and connect to the
URL http://localhost:8080/licserver.

2. In the license server management interface, select Configuration.

3. On the License Server Configuration page that opens, in the Server host ID drop-down list, select
the platform’s Ethernet address.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 52

4.2.4 Managing your License Server and Getting your
License Files

To be able to download NVIDIA vGPU software licenses, you must create at least one license server on
the NVIDIA Licensing Portal and allocate licenses to the server. After creating a license server and
allocating licenses to it, you can download your license file.

4.2.4.1 Creating a License Server on the NVIDIA Licensing
Portal

Creating a license server on the NVIDIA Licensing Portal registers your license server host with
the NVIDIA Licensing Portal through the MAC address of the host.

1. In the NVIDIA Licensing Portal, navigate to the organization or virtual group for which you want to
create the license server.

a) If you have not already logged in, log in to the NVIDIA Enterprise Application Hub and
click NVIDIA LICENSING PORTAL to go to the NVIDIA Licensing Portal.

b) Optional: If your assigned roles give you access to multiple virtual groups, select the virtual
group for which you are creating the license server from the list of virtual groups at the top
right of the page.

If no license servers have been created for your organization or virtual group, the NVIDIA
Licensing Portal dashboard displays a message asking if you want to create a license server.

http://nvid.nvidia.com/dashboard/

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 53

2. On the NVIDIA Licensing Portal dashboard, click CREATE LICENSE SERVER.

The Create License Server pop-up window opens.

3. Provide the details of your license server.

a) In the Server Name field, enter the host name of the license server.
b) In the Description field, enter a text description of the license server. This description is

required and will be displayed on the details page for the license server that you are creating.
c) In the MAC Address field, enter the MAC address of the license server.

4. Add the licenses for the products that you want to allocate to this license server. For each
product, add the licenses as follows:

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 54

a) From the Product drop-down list, select the product for which you want to add licenses.
b) In the Licenses field, enter the number of licenses for the product that you want to add.
c) Click ADD.

5. Leave the Failover License Server and Failover MAC Address fields unset.
6. Click CREATE LICENSE SERVER.

4.2.4.2 Downloading a License File
Each license server that you create has a license file associated with it. The license file contains all of
the licenses that you allocated to the license server. After you download the license file, you can
install it on the license server host associated with the license server on the NVIDIA Licensing Portal.

1. In the NVIDIA Licensing Portal, navigate to the organization or virtual group for which you want to
download the license file.

a) If you have not already logged in, log in to the NVIDIA Enterprise Application Hub and
click NVIDIA LICENSING PORTAL to go to the NVIDIA Licensing Portal.

b) Optional: If your assigned roles give you access to multiple virtual groups, select the virtual
group for which you are downloading the license file from the list of virtual groups at the top
right of the page.

2. In the list of license servers on the NVIDIA Licensing Portal dashboard, select the license server
whose associated license file you want to download.

3. In the License Server Details page that opens, review the licenses allocated to the license server.

http://nvid.nvidia.com/dashboard/

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 55

4. Click DOWNLOAD LICENSE FILE and save the .bin license file to your license server for

installation.

4.2.5 Installing a License
NVIDIA vGPU software licenses are distributed as .bin files for download from the NVIDIA Licensing
Portal.

Before installing a license, ensure that you have downloaded the license file from the NVIDIA
Licensing Portal.

1. In the license server management interface, select License Management.

2. On the License Management page that opens, click Choose File.

vGPU Configuration and Policies

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 56

3. In the file browser that opens, select the .bin file and click Open.
4. Back on the License Management page, click Upload to install the license file on the license

server. The license server displays a confirmation if the license file is installed successfully.

Note: For additional configuration options including Linux server deployment, securing your license
server, and license provisioning, refer to the Virtual GPU Software License Server User Guide.

https://docs.nvidia.com/grid/ls/latest/grid-license-server-user-guide/index.html#abstract

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 57

Chapter 5. Creating Your First NVIDIA Virtual
Compute Server VM

This chapter covers creating an NVIDIA Virtual Compute Server VM, including:
 Creating a Virtual Machine
 Creating the vGPU
 Attaching the vGPU to the VM
 Installing Ubuntu Server 18.04.5 LTS
 Enabling the NVIDIA vGPU
 Installing the NVIDIA Driver in the Ubuntu Virtual Machine
 Licensing an NVIDIA vGPU

5.1 Creating the VM
Now that all configuration is complete, we can create our first VM.

1. Download Ubuntu Server OS.
2. Log in to the server and transfer the Ubuntu ISO to Virtual Machine Manager’s (VMM’s) location

for images: /var/lib/libvirt/images.
3. Start VMM from the Applications menu. Enter your password when prompted.

https://releases.ubuntu.com/18.04/

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 58

4. Click the Create a New Virtual Machine button.

5. Leave the first option selected and click Forward.

6. Select your Guest OS’s ISO image and click Forward. The system normally auto-detects the correct

OS, but if it does not, select the correct OS for the VM.

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 59

7. Enter the desired number of vCPUs and amount of RAM.

8. Enter the desired amount of storage.

9. Enter an appropriate name for the VM, then click Finish.

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 60

10. VMM automatically turns on the VM and presents it in the View Manager. Verify that VM boots

and can load the OS ISO.

11. Power off the VM for now, as some additional configuration is needed. Do not install the OS yet.

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 61

5.2 Attach the vGPU profile to the VM
Now that a VM has been created and has an available vGPU, it is time to combine the two.
This is done by attaching the vGPU to the VM. Using virsh, a virtualization focused interactive
terminal is the best way to accomplish this.

1. Use virsh to edit the VM.

virsh edit [vm name]
[vm name] is the name of the VM created in step 5 of section 5.1.

2. For each vGPU that you want to add to the VM, add a device entry in the form of an
address element inside the source.

<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='[uuid]'/>
</source>
 </hostdev>
</device>

[uuid] is the UUID that was assigned to the vGPU when the vGPU was created.
This example adds a device entry for the vGPU with the UUID a618089-8b16-4d01-
a136-25a0f3c73123.
<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='a618089-8b16-4d01-a136-
25a0f3c73123'/>
 </source>
 </hostdev>
</device>

This example adds device entries for two vGPUs with the following UUIDs:
 c73f1fa6-489e-4834-9476-d70dabd98c40
 b356d38-854e-48be-b376-00c72c7d119c
<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='c73f1fa6-489e-4834-9476-d70dabd98c40'/>
 </source>
 </hostdev>
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
 <address uuid='3b356d38-854e-48be-b376-
00c72c7d119c'/>

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 62

 </source>
 </hostdev>
</device>

3. Now that the vGPU has been added, exit virsh.
4. Power on the VM, either via the VMM GUI or via virsh start [vm name] where [vm name] is the

name of the VM we created in step 5.1.9. In our example:
Virsh start ubu18_vgpu

5.3 Installing Ubuntu Server 18.04.5 LTS
1. Power on the VM either with the VMM GUI or by entering:

virsh start [vm name]
Where [vm name] is the name of the VM we created in step 5.1.9. Wait for the installation screen
to appear.

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 63

2. Select your preferred language and press ENTER.

3. Continue without updating, as this guide is built around Ubuntu 18.04.

4. On this screen, select your network connection type and modify to fit your internal requirements.

Select DHCP for our configuration.

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 64

5. Format the entire disk.

6. Configure the VM with a user account, name, and password.

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 65

7. Select Install OpenSSH server and select Done.

8. Select any server snaps that may be required for internal use in your environment and select

Done.

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 66

9. Installation now runs to completion.

5.4 Installing the NVIDIA Driver on the
Ubuntu Virtual Machine

After you create a Linux VM on the hypervisor and boot the VM, install the NVIDIA vGPU
software display driver in the VM to enable GPU operation fully.
Installation of the NVIDIA vGPU software display driver for Linux requires:
 The compiler toolchain
 Kernel headers
Use the following procedure to install the NVIDIA driver on the Ubuntu VM:
1. Log in and shut down the display manager.

sudo service lightdm stop

2. From a console shell, run the driver installer as the root user.
sudo sh ./ NVIDIA-Linux_x86_64-440.87-grid.run
In some instances, the installer may fail to detect the installed kernel headers and sources. In this
situation, re-run the installer, specifying the kernel source path with the --kernel-source-path
option:
sudo sh ./ NVIDIA-Linux_x86_64-440.87-grid.run \
–kernel-source-path=/usr/src/kernels/3.10.0-229.11.1.el7.x86_64

3. When prompted, accept the option to update the X configuration file (xorg.conf).
4. Enable Persistence Mode.

sudo systemctl daemon-reload
sudo systemctl enable nvidia-persistenced.service
sudo systemctl start nvidia-persistenced.service

5. Reboot the system.
sudo reboot

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 67

6. After the system has rebooted, confirm that you can see your NVIDIA vGPU device in the output
from nvidia-smi.
nvidia-smi

After you install the NVIDIA vGPU software graphics driver, you can license any NVIDIA vGPU
software licensed products that you are using. For instructions, see Licensing an NVIDIA vGPU (update
11.0).

5.5 Licensing an NVIDIA vGPU
NVIDIA vGPU is a licensed product. When booted on a supported GPU, a vGPU initially operates at full
capability but its performance is degraded over time if the VM fails to obtain a license. If the
performance of a vGPU has been degraded, the full capability of the vGPU is restored when a license
is acquired.

For complete information about configuring and using NVIDIA vGPU software licensed features,
including vGPU, refer to Virtual GPU Client Licensing User Guide. Perform this task from the guest VM
to which the vGPU is assigned.

The NVIDIA X Server Settings tool that you use to perform this task detects that a vGPU is assigned to
the VM and, therefore, provides no options for selecting the license type. After you license the vGPU,
NVIDIA vGPU software automatically selects the correct type of license based on the vGPU type.

1. Start NVIDIA X Server Settings by using the method for launching applications provided by your

Linux distribution.
For example, on Ubuntu Desktop, open the Dash, search for NVIDIA X Server Settings, and click
the NVIDIA X Server Settings icon.

2. In the NVIDIA X Server Settings window that opens, click Manage License.
The License Edition section of the NVIDIA X Server Settings window shows that NVIDIA vGPU is
currently unlicensed.

3. In the Primary Server field, enter the address of your primary NVIDIA vGPU software License
Server.
The address can be a fully qualified domain name such as nvidialicense1.example.com, or
an IP address. If you have only one license server configured, enter its address in this field.

4. Leave the Port Number field under the Primary Server field unset.
The port defaults to 7070, which is the default port number used by NVIDIA vGPU
software License Server.

5. In the Secondary Server field, enter the address of your secondary NVIDIA vGPU software License
Server.
The address can be a fully qualified domain name such as nvidialicense2.example.com, or
an IP address. If you have only one license server configured, leave this field unset.

6. Leave the Port Number field under the Secondary Server field unset.
The port defaults to 7070, which is the default port number used by NVIDIA vGPU
software License Server.

7. Click Apply to assign the settings.

https://docs.nvidia.com/grid/latest/grid-licensing-user-guide/index.html

Creating Your First NVIDIA Virtual Compute Server VM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 68

The system requests the appropriate license for the current vGPU from the configured license server.

If the system fails to obtain a license, see Virtual GPU Client Licensing User Guide for guidance on
troubleshooting.

https://docs.nvidia.com/grid/latest/grid-licensing-user-guide/index.html

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 69

Chapter 6. Selecting the Correct vGPU
Profiles

Choosing the right vGPU profile to maximize your stakeholders’ experience in the virtual instance is
critical for ensuring expected performance and quality of service. Below, you will find guidance
through the vGPU Manager and beyond to ensure your deployment is successful.

6.1 The Role of the vGPU Manager
NVIDIA vGPU profiles assign custom amounts of dedicated GPU memory for each user. NVIDIA vGPU
Manager assigns the correct amount of memory to meet the specific needs within the workflow for
said user. Every virtual machine has dedicated GPU memory and must be assigned accordingly,
ensuring that it has the resources needed to handle the expected compute load.
NVIDIA vGPU Manager allows up to eight users to share each physical GPU by assigning the graphics
resources of the available GPUs to virtual machines using a balanced approach. Depending on the
number of GPUs within each line card, there can be multiple user types assigned.

6.2 vGPU Profiles for NVIDIA Virtual
Compute Server

The profiles represent a very flexible deployment option of virtual GPUs, varying in size of GPU
memory. The division of GPU memory defines the number of vGPUs that are possible per GPU.
Please refer to the NVIDIA Virtual Compute Server Solution Brief for a full list of supported and
recommended NVIDIA GPU’s.

C-series vGPU types are NVIDIA vCS vGPU types, which are optimized for compute-intensive
workloads. As a result, they support only a single display head at a maximum resolution of 4096×2160
and do not provide RTX graphics acceleration.

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/nvidia-virtual-compute-server-solution-overview.pdf

Selecting the Correct vGPU Profiles

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 70

The following table illustrates examples of the NVIDIA vCS profiles and how they fractionalize.

Virtual GPU Type Intended Use Case Frame Buffer (MB)
48C Training Workloads 49152
40C Training Workloads 40960
32C Training Workloads 32768
24C Training Workloads 24576
20C Training Workloads 20480
16C Training Workloads 16384
12C Training Workloads 12288
10C Training Workloads 10240
8C Training Workloads 8192
6C Training Workloads 6144
5C Training Workloads 5120
4C Inference Workloads 4096

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 71

Chapter 7. GPU Aggregation for NVIDIA
Virtual Compute Server

NVIDIA vCS supports GPU aggregation, a feature which allows one VM to access more than one GPU.
GPU aggregations is often required for compute-intensive workloads.

NVIDIA vCS also supports both multi-vGPU and peer-to-peer computing.

The following sections describe both technologies and explain how to deploy GPU aggregation within
Red Hat Enterprise Linux with KVM.

7.1 Multi-vGPU
NVIDIA vCS supports multi-vGPU workloads which can offer a monumental improvement in virtual
GPU performance by aggregating the power of up to 16 NVIDIA GPUs in a single virtual machine.
With multi-vGPU, the GPUs are not directly connected to one another. The following graphic
illustrates multi-vGPU and how a single VM can be assigned 4 vGPUs:

7.2 Peer-to-Peer NVIDIA NVLINK
NVIDIA vCS supports peer to peer computing where multiple GPU’s are connected through NVIDIA
NVLink. This enables a high speed, direct GPU-to-GPU interconnect that provides higher bandwidth
for multi-vGPU system configurations than traditional PCIe-based solutions. The following graphic
illustrates peer-to-peer NVLink:

GPU Aggregation for NVIDIA Virtual Compute Server

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 72

This peer-to-peer communication allows access to device memory between GPU’s from within the
CUDA kernels and eliminates system memory allocation and copy overhead. It provides a more
convenient means of multi-vGPU programming.

Peer-to-peer CUDA transfers over NVLink are supported for Linux only, not for Microsoft
Windows. Currently vGPU does not support NVSwitch; therefore, only direct connections are
supported. Peer-to-peer communication is supported only within a single VM. There is no SLI
support; therefore, graphics is not included in this support, only CUDA. Peer-to-Peer CUDA Transfers
over NVLink are supported only on a subset of vGPUs, Red Hat Enterprise Linux with KVM releases,
and guest OS releases. Only C-series full frame buffer (1:1) vGPU profiles are supported with NVLink.
Refer to the vGPU latest release notes for a listed of GPU’s which are supported.

1. Connect to the RHEL host over SSH, using Putty, for example.
2. Type nvidia-smi in the command window.

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-red-hat-el-kvm/index.html#peer-to-peer-support

GPU Aggregation for NVIDIA Virtual Compute Server

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 73

Note: The form factor of the V100 graphics card in this example is SXM2.

3. Detect the topology between the GPUs by typing the following command:

$ nvidia-smi topo -m

4. Assign suitable 1:1 vGPU(s) to the VM.

The CUDA driver in the VM detects the peer-to-peer capability between the vGPUs and allows the
CUDA application to use it.

Note: NVLink is supported in non-MIG mode, please refer to Chapter 9 for more information regarding
NVIDIA Multi-Instance GPU’s (MIG).

7.3 GPUDirect Technology Support
NVIDIA® GPUDirect® technology remote direct memory access (RDMA) enables network devices to
access the vGPU frame buffer directly, bypassing CPU host memory altogether. GPUDirect technology
is supported only on a subset of vGPUs and guest OS releases since vGPU release 11.1.

Only C-series vGPUs that are allocated all of the physical GPU's frame buffer on physical GPUs based
on the NVIDIA Ampere architecture are supported. Both time-sliced and MIG-backed vGPUs that meet
these requirements are supported. Please refer to the vGPU user guide for more information
regarding supported OS and NVIDIA GPUs.

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-red-hat-el-kvm/index.html#gpudirect-technology-support

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 74

Chapter 8. Page Retirement and ECC

NVIDIA vCS supports ECC and dynamic page retirement on all supported GPUs. This feature "retires"
bad frame buffer memory cells by retiring the page a cell belongs to. Dynamic page retirement is done
automatically for cells that are degrading in quality. This feature can improve the longevity of an
otherwise good board and is thus an important resiliency feature on supported products, especially in
HPC and enterprise environments.

Page retirement may only occur when ECC is enabled. However, once a page has been retired it is
permanently blacklisted, even if ECC is later disabled. Refer to the NVIDIA Developer Zone page
retirement documentation for more information.

https://docs.nvidia.com/deploy/dynamic-page-retirement/index.html
https://docs.nvidia.com/deploy/dynamic-page-retirement/index.html

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 75

Chapter 9. NVIDIA Multi-Instance GPU
Configuration for KVM

NVIDIA A100 Tensor Core GPU is based upon the NVIDIA Ampere architecture and accelerates
compute workloads such as AI, data analytics, and HPC in the data center. MIG support on vGPUs
began at the NVIDIA vGPU 11.1 software release and gives users the flexibility to use the NVIDIA A100
in MIG mode or non-MIG mode. When the NVIDIA A100 is in non-MIG mode, NVIDIA vCS software
uses vGPU temporal partitioning and GPU time slice scheduling. MIG mode spatially partitions the
hardware of GPU so that each MIG can be fully isolated with its own streaming multiprocessors
(SM’s), high bandwidth, and memory. MIG can partition available GPU compute resources as well.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf

NVIDIA Multi-Instance GPU Configuration for KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 76

Each instance’s processors have separate and isolated paths through the entire memory system. The
on-chip crossbar ports, L2 cache banks, memory controllers, and DRAM address busses are all
assigned uniquely to an individual instance. This ensures that an individual user’s workload can run
with predictable throughput and latency, using the same L2 cache allocation and DRAM bandwidth,
even if other tasks are thrashing their own caches or saturating their DRAM interfaces.

A single NVIDIA A100 has eight usable GPU memory slices, each with 5 GB of memory, but there are
only seven usable SM slices. There are seven SM slices, not eight, because some of the SMs are used
to cover operational overhead when MIG mode is enabled. MIG mode is configured (or reconfigured)
using nvidia-smi and has profiles that you can choose to meet the needs of HPC, deep learning, or
accelerated computing workloads.

In summary, MIG spatially partitions the NVIDIA GPU into separate GPU instances but provides
benefits of reduced latency over vGPU temporal partitioning for compute workloads. The following
tables summarizes similarities as well as differences between A100 MIG capabilities and NVIDIA vGPU
software, while also highlighting the additional flexibility when they are combined.

NVIDIA A100 MIG-
Backed
Virtual GPU Types

NVIDIA A100 with
NVIDIA vCS
Virtual GPU Types

GPU Partitioning Spatial (hardware) Temporal (software)
Number of Partitions 7 10
Compute Resources Dedicated Shared
Compute Instance Partitioning Yes No
Address Space Isolation Yes Yes
Fault Tolerance Yes (highest quality) Yes
Low Latency Response Yes (highest quality) Yes
NVLink Support No Yes
Multi-Tenant Yes Yes
GPUDirect RDMA Yes (GPU instances) Yes
Heterogenous Profiles Yes No
Management - requires Super User Yes No

One of the new features introduced to vGPUs when VM’s are using MIG0backed virtual GPUs is the
ability to have different sized (heterogenous) partitioned GPU instances. The following table
illustrates the 18 possible size combinations when NVIDIA A100 has MIG mode enabled.

NVIDIA Multi-Instance GPU Configuration for KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 77

Note: When using vCS and MIG mode is enabled, the vGPU software recognizes the MIG backed vGPU
resource as if it were 1:1 or full GPU profile.

NVIDIA vGPU software supports MIG only with NVIDIA Virtual Compute Server and Linux guest
operating systems. To support GPU instances with NVIDIA vGPU, a GPU must be configured with MIG
mode enabled and GPU instances must be created and configured on the physical GPU prior to
assigning the resource to a VM. For more information, see Configuring a GPU for MIG-Backed vGPUs
in the Virtual GPU Software Documentation. For general information about the MIG feature,
see NVIDIA Multi-Instance GPU User Guide.

9.1 Terminology
9.1.1 GPU Context
A GPU context is analogous to a CPU process. It encapsulates all of the resources necessary to execute
operations on the GPU, including a distinct address space, memory allocations, etc. A GPU context has
the following properties:
 Fault isolation
 Individual scheduling
 Distinct address space

9.1.2 GPU Engine
A GPU engine executes work on the GPU. The most commonly used engine is the Compute/Graphics
engine, which executes the compute instructions. Other engines include the copy engine (CE), which
is responsible for performing DMAs, NVDEC for video decoding, etc. Each engine can be scheduled
independently and can execute work for different GPU contexts.

https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#configuring-a-gpu-for-mig-backed-vgpus
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/

NVIDIA Multi-Instance GPU Configuration for KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 78

9.1.3 GPU Memory Slice
A GPU memory slice is the smallest fraction of the A100 GPU’s memory, including the corresponding
memory controllers and cache. A GPU memory slice is roughly one eighth of the total GPU memory
resources, including both capacity and bandwidth.

9.1.4 GPU SM Slice
A GPU SM slice is the smallest fraction of the SMs on the A100 GPU. A GPU SM slice is roughly one
seventh of the total number of SMs available in the GPU when configured in MIG mode.

9.1.5 GPU Slice
A GPU slice is the smallest fraction of the A100 GPU that combines a single GPU memory slice and a
single GPU SM slice.

9.1.6 GPU Instance
A GPU instance (GI) is a combination of GPU slices and GPU engines (DMAs, NVDECs, etc.). Anything
within a GPU instance always shares all the GPU memory slices and other GPU engines, but its SM
slices can be further subdivided into compute instances (CIs). A GPU instance provides memory QoS.
Each GPU slice includes dedicated GPU memory resources which limit both the available capacity and
bandwidth, as well as provide memory QoS. Each GPU memory slice gets one eighth of the total GPU
memory resources, and each GPU SM slice gets one seventh of the total number of SMs.

9.1.7 Compute Instance
A GPU instance can be subdivided into multiple compute instances. A compute instance (CI) contains
a subset of the parent GPU instance’s SM slices and other GPU engines (DMAs, NVDECs, etc.). The CIs
share memory and engines.
The number of slices that a GI (GPU Instance) can be created with is not arbitrary. The NVIDIA driver
APIs provide a number of “GPU Instance Profiles,” and users can create GIs by specifying one of these
profiles.
On a given GPU, multiple GIs can be created from a mix and match of these profiles, so long as
enough slices are available to satisfy the request.

Profile Name Fraction of
Memory

Fraction of SMs Hardware Units Number of
Instances
Available

MIG 1g.5gb 1/8 1/7 0 NVDECs 7
MIG 2g.10gb 2/8 2/7 1 NVDECs 3
MIG 3g.20gb 4/8 3/7 2 NVDECs 2
MIG 4g.20gb 4/8 4/7 2 NVDECs 1
MIG 7g.40gb Full 7/7 5 NVDECs 1

NVIDIA Multi-Instance GPU Configuration for KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 79

9.2 MIG Prerequisites
The following prerequisites apply when using A100 in MIG mode.
 Supported only on NVIDIA A100 products and associated systems using A100 (see the vGPU

certified servers page)
 Requires CUDA 11 and NVIDIA vGPU driver 450.51.05 or greater
 Requires CUDA 11 supported Linux operating system distributions

MIG can be managed programmatically using NVIDIA Management Library (NVML) APIs or its
command-line-interface, nvidia-smi. Note that for brevity, some of the nvidia-smi output in the
following examples may be cropped to showcase the relevant sections of interest.
For more information on the MIG commands, see the nvidia-smi man page or enter the command

nvidia-smi mig --help

For information on the MIG management APIs, see the NVML header (nvml.11.0.h) included in CUDA
11.

9.2.1 Enable MIG Mode
To support GPU instances with NVIDIA vGPU a GPU must be configured with MIG mode enabled, and
GPU instances must be created and configured on the physical GPU. Optionally, you can create
compute instances within the GPU instances. If you do not create compute instances within the GPU
instances, they can be added later for individual vGPUs from the guest VMs.

Ensure that the following prerequisites are met:

 The NVIDIA Virtual GPU Manager is installed on the hypervisor host.
 You have root user privileges on your hypervisor host machine.
 You have determined which GPU instances correspond to the vGPU types of the MIG-backed

vGPUs that you will create. To get this information, consult the table of MIG-backed vGPUs for
your GPU in Virtual GPU Types for Supported GPUs.

 The GPU is not being used by any other processes, such as CUDA applications, monitoring
applications, or the nvidia-smi command.

1. Open a command shell as the root user on your hypervisor host machine. You can use secure shell
(SSH) for this purpose.

2. Use the nvidia-smi command to determine whether MIG mode is enabled. By default, MIG
mode is disabled. This example shows that MIG mode is disabled on GPU 0.

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 450.36.04 Driver Version: 450.36.04 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

https://www.nvidia.com/en-us/data-center/resources/vgpu-certified-servers/
https://www.nvidia.com/en-us/data-center/resources/vgpu-certified-servers/
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#supported-gpus-grid-vgpu

NVIDIA Multi-Instance GPU Configuration for KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 80

| | | MIG M. |
|===============================+======================+======================|
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Disabled
+-------------------------------+----------------------+----------------------+

3. If MIG mode is disabled, enable it.
$ nvidia-smi -i [gpu-ids] -mig 1

gpu-ids
A comma-separated list of GPU indexes, PCI bus IDs, or UUIDs that specifies the GPUs on which you
want to enable MIG mode. If gpu-ids is omitted, MIG mode is enabled on all GPUs in the system.

This example enables MIG mode on GPU 0.

$ nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:36:00.0
All done.

Note: If the GPU is being used by another process, nvidia-smi fails and displays a warning message that
MIG mode for the GPU is in the pending enable state. In this situation, stop all processes that are using
the GPU and retry the command.

4. Query the GPUs on which you enabled MIG mode to confirm that MIG mode is enabled.

This example queries GPU 0 for the PCI bus ID and MIG mode in comma-separated values (CSV)
format.

$ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
pci.bus_id, mig.mode.current
00000000:36:00.0, Enabled

9.2.2 List GPU Instance Profiles
1. List the GPU instance profiles that are available on your GPU. You must specify the profiles by

their IDs, not their names, when you create them.

$ nvidia-smi mig -lgip
+--+
| GPU instance profiles: |
| GPU Name ID Instances Memory P2P SM DEC ENC |
| Free/Total GiB CE JPEG OFA |
|==|
| 0 MIG 1g.5gb 19 7/7 4.95 No 14 0 0 |
| 1 0 0 |
+--+
| 0 MIG 2g.10gb 14 3/3 9.90 No 28 1 0 |

NVIDIA Multi-Instance GPU Configuration for KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 81

| 2 0 0 |
+--+
| 0 MIG 3g.20gb 9 2/2 19.79 No 42 2 0 |
| 3 0 0 |
+--+
| 0 MIG 4g.20gb 5 1/1 19.79 No 56 2 0 |
| 4 0 0 |
+--+
| 0 MIG 7g.40gb 0 1/1 39.59 No 98 5 0 |
| 7 1 1 |
+--+

9.2.3 Creating GPU Instances
Create the GPU instances that correspond to the vGPU types of the MIG-backed vGPUs that you will
create.

$ nvidia-smi mig -cgi gpu-instance-profile-ids

gpu-instance-profile-ids
A comma-separated list of GPU instance profile IDs that specifies the GPU instances that you want to
create.

Supported profiles are 19, 14, 9, 5, and 0. These were listed in the previous step within the ID
column.

For example, this command creates two 2g.10.gb GPU instances:

$ nvidia-smi mig -cgi 14,14 -gi 0

This command creates three 3g.20.gb GPU instances:

$ nvidia-smi mig -cgi 9,9,9 -gi 0

9.2.4 VM Configuration
Now that the MIG GPU instance has been created, next we will create appropriate mdev device for
the MIG GPU instance.

For example, 2g.10gb, which has profile ID 14, was used to create two GPU instances in the previous
step. Now we will create an mdev device for this profile (GRID A100-2-10C). Also, you must use
different VFs for the two GPU instances. You can only assign one mdev device to a given VF.

Note: An mdev is identified by its UUID. The /sys/bus/mdev/devices/ directory contains a symbolic link to
the mdev device file.

NVIDIA Multi-Instance GPU Configuration for KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 82

echo "aa618089-8b16-4d01-a136-25a0f3c73123" >
/sys/bus/pci/devices/0000\:c1\:00.4/mdev_supported_types/nvidia-476/create

echo "1a6b0c78-0297-454f-b49a-65598e5e2e09" >
/sys/bus/pci/devices/0000\:c1\:00.5/mdev_supported_types/nvidia-476/create

Attach the mdev device to the VM.

virsh edit <VM Name>
<hostdev mode='subsystem' type='mdev' model='vfio-pci'>
<source>
<address uuid='<uuid>'/>
</source>
</hostdev>

Boot the VM with the MIG GPU Instance. In the next step we will create the Compute instance
(optional).

9.2.5 Optional: Creating Compute Instances
You can add the compute instances for an individual vGPU from within the guest VM. If you want to
replace the compute instances that were created when the GPU was configured for MIG-backed
vGPUs, you can delete them before adding the compute instances from within the guest VM.
Ensure that the following prerequisites are met:

 You have root user privileges on the guest VM.
 The GPU instance is not being used by any other processes, such as CUDA applications,

monitoring applications, or the nvidia-smi command.

List the compute instances that can be created in a guest VM command shell:

$ nvidia-smi mig -lcip

Create the compute instances that you need within each GPU instance.

NVIDIA Multi-Instance GPU Configuration for KVM

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 83

$ nvidia-smi mig -cci -gi <gpu-instance-ids>

Where <gpu-instance-ids> is a comma-separated list of GPU instance IDs that specifies the GPU
instances within which you want to create the compute instances.
For example, to create compute instance with profile #2 (3g.20gb)
$ nvidia-smi mig -cci 2 -gi 0

If you want to create multiple compute instances and run apps in parallel, see the NVIDIA Multi-
Instance GPU User Guide for more complex scenarios.

Caution: To avoid an inconsistent state between a guest VM and the hypervisor host, do not create
compute instances from the hypervisor on a GPU instance on which an active guest VM is running.
Instead, create the compute instances from within the guest VM as explained in Since 11.1: Modifying a
MIG-Backed vGPU's Configuration.

9.2.6 Optional: Update Containers for a MIG-Enabled
vGPU

To run containers on a MIG-enabled vGPU you need to update the nvidia-docker2 package. Follow
the instructions NVIDIA Multi-Instance GPU User Guide.

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | apt-key add - |
curl -s -L https://nvidia.github.io/nvidia-docker/ubuntu18.04/nvidia-
docker.list | tee /etc/apt/sources.list.d/nvidia-docker.list
apt-get update
apt-get install nvidia-docker2

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html#cuda-ci
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html#cuda-ci
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html#nvidia-docker

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 84

Chapter 10. Installing Docker and the
Docker Utility Engine for NVIDIA
GPUs

The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The
toolkit includes a container runtime library and utilities to configure containers automatically to
leverage NVIDIA GPUs. Full documentation and frequently asked questions are available on
the repository wiki.

10.1 Enabling the Docker Repository and
Installing the NVIDIA Container Toolkit

Make sure you have installed the NVIDIA driver and Docker 19.03 for your Linux distribution note that
you do not need to install the CUDA toolkit on the host, but the driver needs to be installed.

https://github.com/NVIDIA/libnvidia-container
https://github.com/NVIDIA/nvidia-docker/wiki

Installing Docker and the Docker Utility Engine for NVIDIA GPUs

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 85

Note: With the release of Docker 19.03, nvidia-docker2 packages are deprecated since NVIDIA GPUs are
now natively supported as devices in the Docker runtime.

For first-time users of Docker 19.03 and GPUs, continue with the instructions for getting started
below.
1. Add the package repositories.

distribution=$(. /etc/os-release;echo IDVERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key
add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

2. Download information from all configured sources about the latest versions of the packages.
Install the nvidia-container-toolkit package.
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit

3. Restart the docker service.
sudo systemctl restart docker

10.2 Testing Docker and NVIDIA Container
Run Time

Use the commands below to test Docker and NVIDIA container run time.

Test nvidia-smi with the latest official CUDA image
docker run --gpus all nvidia/cuda:10.0-base nvidia-smi

Start a GPU enabled container on two GPUs
docker run --gpus 2 nvidia/cuda:10.0-base nvidia-smi

Starting a GPU enabled container on specific GPUs
docker run --gpus '"device=1,2"' nvidia/cuda:10.0-base nvidia-smi
docker run --gpus '"device=UUID-ABCDEF,1"' nvidia/cuda:10.0-base nvidia-smi

Specifying a capability (graphics, compute, ...) for my container
Note this is rarely if ever used this way
docker run --gpus all,capabilities=utility nvidia/cuda:10.0-base nvidia-smi

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM DU-10130-001_v01 | 86

Chapter 11. Testing and Benchmarking

All deep learning frameworks are found on the NGC container registry,
https://ngc.nvidia.com/container. NVIDIA is using the 19.04-py3 containers for each DL framework.
Instructions for installing NVIDIA Docker can be found on the GitHub page at
https://github.com/NVIDIA/nvidia-docker.
Note that most of the frameworks assume you have the dataset available on your system. NVIDIA is
not allowed to distribute ImageNet (http://image-net.org/download) so customers must acquire it
themselves. It is needed for all the RN50 training benchmarks.
Following are several examples with GNMT. While the dataset is the same, the preprocessing on the
dataset is different for each case. Therefore, you cannot use the same dataset for each run. You must
run the specific command to download and process the data to the benchmark example.
The following instructions are intended to be a shortcut to getting started with benchmarking. In the
working directory of each benchmark. For each benchmark, a README file (README.md or
README.txt) provides more details of data download, preprocessing, and running the code.

11.1 TensorRT RN50 Inference
 The container used in this example is nvcr.io/nvidia/tensorrt:19.04-py3.
 Required binary is included with the container at /workspace/tensorrt/bin.
 The Resnet50 model prototxt and caffemodel files are in the container at

/workspace/tensorrt/data/resnet50.
 The command may take several minutes to run because NVIDIA® TensorRT™ is building the

optimized plan prior to running. If you want to see what it is doing, add --verbose to the
command.

11.1.1 Commands to Run the Test
Use the commands below to run the TensorRT RN50 Inference test.

$ docker pull nvcr.io/nvidia/tensorrt:19.04-py3
$ nvidia-docker run -it --rm -v $(pwd):/work nvcr.io/nvidia/tensorrt:19.04-
py3
cd /workspace/tensorrt/data/resnet50
/workspace/tensorrt/bin/trtexec --batch=128 --iterations=400 --
workspace=1024 --percentile=99

https://ngc.nvidia.com/container
https://github.com/NVIDIA/nvidia-docker
http://image-net.org/download

Testing and Benchmarking

NVIDIA Virtual Compute Server for Red Hat Enterprise Linux with KVM | 87

deploy=ResNet50_N2.prototxt --model=ResNet50_fp32.caffemodel --output=prob -
-int8

11.1.2 Interpreting the Results
Results are reported in time to infer the given batch size. To convert to images per second, compute
BATCH_SIZE/AVERAGE_TIME.

11.2 TensorFlow RN50 Mixed Training
 The container used in this example is nvcr.io/nvidia/tensorflow:19.04-py3.
 The scripts for this test are in /workspace/nvidia-examples/cnn.
 The example is a synthetic training example, so no data is needed.
 README.md describes the functionality of this test.

11.2.1 Commands to Run the Test
$ docker pull nvcr.io/nvidia/tensorflow:19.04-py3
$ nvidia-docker run -it --rm -v $(pwd):/work
nvcr.io/nvidia/tensorflow:19.04-py3
cd /workspace/nvidia-examples/cnn
mpirun --allow-run-as-root -np 1 python -u ./resnet.py --batch_size 256 --
num_iter 800 --precision fp16 --iter_unit batch --layers 50

11.2.2 Interpreting the Results
This benchmark reports training performance in images per second at each reporting iteration. Use
the last few values reported to represent training performance.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

Chapter 12. Troubleshooting

12.1 Forums
NVIDIA forums are a very inclusive source of solutions to many problems that may be faced when
deploying a virtualized environment. Search on the NVIDIA forums located at
https://gridforums.nvidia.com/ first.
You may also wish to look through the NVIDIA Enterprise Services Knowledgebase to find further
support articles and links at https://nvidia-esp.custhelp.com/app/answers/list/autologout/1
Keep in mind that not all issues within your deployment may be answered in the NVIDIA vGPU
forums. You may also have to reference forums from the hardware supplier, the hypervisor and
application themselves.
Some examples of other key forums to look through are as follows:
 HPE ProLiant Server Forums: https://community.hpe.com/t5/ProLiant/ct-p/proliant
 Dell Server Forums: https://www.dell.com/community/Servers/ct-p/ESServers
 Lenovo Server Forums: https://forums.lenovo.com/t5/Datacenter-Systems/ct-p/sv_eg

12.2 Filing a Bug Report
When filing a bug or requesting support assistance, it is critical to include information about the
environment, so that the technical staff that can help you resolve the issue. NVIDIA includes the
nvidia-bug-report.sh script in the RPM installation package to collect and package this critical
information. The script collects the following information:
 RHEL version
 PCI information
 CPU information
 GPU information
 RPM information
 NVRM messages from vmkernel.log
 System dmesg output
 Which virtual machines have vGPU configured
 NSMI output
When running this script:

http://www.nvidia.com/
https://gridforums.nvidia.com/
https://nvidia-esp.custhelp.com/app/answers/list/autologout/1
https://community.hpe.com/t5/ProLiant/ct-p/proliant
https://www.dell.com/community/Servers/ct-p/ESServers
https://forums.lenovo.com/t5/Datacenter-Systems/ct-p/sv_eg

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

 You may specify the output location for the bug report using either the -o or –output switch
followed by the output file name. If you do not specify an output directory, the script writes the
bug report to the current directory.

 If you do not specify a file name, the script uses the default name nvidia-bug-
report.log.gz.

 If the selected directory already contains a bug report file, the script changes the name of that file
to nvidia-bug-report.log.old.gz before generating a new nvidia-bug-report.log.gz
file.

To collect a bug report, issue the command:
$ nvidia-bug-report.sh
The system displays the following message during the collection process:
nvidia-bug-report.sh will now collect information about your system and
create the file 'nvidia-bug-report.log.gz' in the current directory. It may
take several seconds to run. In some cases, it may hang trying to capture
data generated dynamically by the vSphere kernel and/or the NVIDIA kernel
module. While the bug report log file will be incomplete if this happens, it
may still contain enough data to diagnose your problem.
Be sure to include the nvidia-bug-report.log.gz log file when reporting problems to NVIDIA.

http://www.nvidia.com/

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

Notice
This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained
in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or
for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any
Material (defined below), code, or functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own
risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this
document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid
a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result
in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage,
costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the
third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER
AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might
incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance
with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, CUDA, NVIDIA OptiX, NVIDIA RTX, NVIDIA Turing, Quadro, Quadro RTX, and TensorRT trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2020 NVIDIA Corporation. All rights reserved.

http://www.nvidia.com/

	Chapter 1. Executive Summary
	1.1 What is NVIDIA Virtual Compute Server
	1.2 Why NVIDIA vGPU?
	1.3 NVIDIA vGPU Architecture
	1.4 Supported GPUs
	1.5 Virtual GPU Types
	1.6 General Prerequisites
	1.6.1 Server Configuration

	Chapter 2. Installing Red Hat Enterprise with KVM
	2.1 Choosing the Installation Method
	2.2 Preparing USB Boot Media
	2.3 Installing RHEL with KVM
	2.4 Initial Host Configuration
	2.5 Verify Host Configuration

	Chapter 3. vGPU Configuration and Policies
	3.1 Getting the BDF and Domain of a GPU
	3.2 Creating the vGPU Instance(s)
	3.3 Changing the vGPU Scheduling Policy
	3.3.1 vGPU Scheduling Policies
	3.3.2 RmPVMRL Registry Key
	3.3.3 Changing the vGPU Scheduling Policy for All GPUs
	3.3.4 Changing the vGPU Scheduling Policy for Selected GPUs
	3.3.5 Restoring Default vGPU Scheduler Settings

	3.4 Disabling and Enabling ECC Memory
	3.4.1 Disabling ECC Memory
	3.4.2 Enabling ECC Memory

	Chapter 4. Deploying the NVIDIA vGPU Software License Server
	4.1 Platform Requirements
	4.1.1 Hardware and Software Requirements
	4.1.2 Platform Configuration Requirements
	4.1.3 Network Ports and Management Interface

	4.2 Installing the NVIDIA vGPU Software License Server on Windows
	4.2.1 Installing the Java Runtime Environment on Windows
	4.2.2 Installing the License Server Software on Windows
	4.2.3 Obtaining the License Server’s MAC Address
	4.2.4 Managing your License Server and Getting your License Files
	4.2.4.1 Creating a License Server on the NVIDIA Licensing Portal
	4.2.4.2 Downloading a License File

	4.2.5 Installing a License

	Chapter 5. Creating Your First NVIDIA Virtual Compute Server VM
	5.1 Creating the VM
	5.2 Attach the vGPU profile to the VM
	5.3 Installing Ubuntu Server 18.04.5 LTS
	5.4 Installing the NVIDIA Driver on the Ubuntu Virtual Machine
	5.5 Licensing an NVIDIA vGPU

	Chapter 6. Selecting the Correct vGPU Profiles
	6.1 The Role of the vGPU Manager
	6.2 vGPU Profiles for NVIDIA Virtual Compute Server

	Chapter 7. GPU Aggregation for NVIDIA Virtual Compute Server
	7.1 Multi-vGPU
	7.2 Peer-to-Peer NVIDIA NVLINK
	7.3 GPUDirect Technology Support

	Chapter 8. Page Retirement and ECC
	Chapter 9. NVIDIA Multi-Instance GPU Configuration for KVM
	9.1 Terminology
	9.1.1 GPU Context
	9.1.2 GPU Engine
	9.1.3 GPU Memory Slice
	9.1.4 GPU SM Slice
	9.1.5 GPU Slice
	9.1.6 GPU Instance
	9.1.7 Compute Instance

	9.2 MIG Prerequisites
	9.2.1 Enable MIG Mode
	9.2.2 List GPU Instance Profiles
	9.2.3 Creating GPU Instances
	9.2.4 VM Configuration
	9.2.5 Optional: Creating Compute Instances
	9.2.6 Optional: Update Containers for a MIG-Enabled vGPU

	Chapter 10. Installing Docker and the Docker Utility Engine for NVIDIA GPUs
	10.1 Enabling the Docker Repository and Installing the NVIDIA Container Toolkit
	10.2 Testing Docker and NVIDIA Container Run Time

	Chapter 11. Testing and Benchmarking
	11.1 TensorRT RN50 Inference
	11.1.1 Commands to Run the Test
	11.1.2 Interpreting the Results

	11.2 TensorFlow RN50 Mixed Training
	11.2.1 Commands to Run the Test
	11.2.2 Interpreting the Results

	Chapter 12. Troubleshooting
	12.1 Forums
	12.2 Filing a Bug Report

